

FrontPage

Advanced Weather Interactive Processing System II (AWIPS
II) - Software System Design Description
Document No. AWPR.DSN.A2.SSDD-08.00
1 March 2023

Prepared Under
Contract EA133W-17-CQ-0082
Advanced Weather Interactive Processing System (AWIPS)
Operations and Maintenance

Submitted to:
Mr. Timothy Wampler
Contracting Of�cer
U.S. Department of Commerce
National Oceanic and Atmospheric Administration
Eastern Region Acquisition Division
Room 815
200 Granby Street
Norfolk, Virginia 23510

Prepared by:

Raytheon Technologies
8401 Colesville Road, Suite 800
Silver Spring, MD 20910

Revision History

Document No. Publication Date Section(s) Affected Description of Change(s)

AWPR.DSN.A2.SSDD-01.00 1 March 2018 N/A Bi-Annual Review

AWPR.DSN.A2.SSDD-03.00 9 September 2020 N/A Bi-Annual Review

AWPR.DSN.A2.SSDD-04.00 1 March 2021 N/A Bi-Annual Review

AWPR.DSN.A2.SSDD-05.00 1 September 2021 N/A Bi-Annual Review

AWPR.DSN.A2.SSDD-06.00 1 March 2022 N/A Bi-Annual Review

AWPR.DSN.A2.SSDD-07.00 12 September 2022 N/A Bi-Annual Review

AWPR.DSN.A2.SSDD-08.00 1 March 2023 N/A Bi-Annual Review

List of Tables
Table 1-1. Tags Commonly Used in Building RPMs

List of Figures
Figure 1-1. Dependency Structure
Figure 1-2. Plugin Development/Plugin Project
Figure 1-3. Plugin Project/Naming
Figure 1-4. Plugin Project/Content
Figure 1-5. JAR Selection
Figure 1-6. Plugin Project Properties
Figure 1-7. Manifest Dependencies Tab
Figure 1-8. Runtime Tab
Figure 1-9. Type Hierarchy
Figure 1-10. Shortcut List
Figure 1-11. Example Open Type Dialog
Figure 1-12. Example of Open Resource
Figure 1-13. Code Templates
Figure 1-14. Formatter
Figure 1-15. Save Actions
Figure 2-1. Extension Point Selection
Figure 2-2. List of Extensions
Figure 2-3. ClimateDataFTPArgs.java Tab
Figure 2-4. GenScriptsDig.java Tab
Figure 2-5. PluginDataObject Class Hierarchy
Figure 2-6. Import Dialog: Select
Figure 2-7. Import Dialog: Import Projects
Figure 3-1. indexAlert Route
Figure 3-2. Parser Classes
Figure 3-3. Typical Sequence of Events During Lifetime of a Decoder Class
Figure 3-4. Plugin Registry
Figure 3-5. Plugin Startup: System Initialization and Plugin Initialization
Figure 3.6: Ignite High-Level Architecture
Figure 3.7: Ignite Cluster and Cache Structure
Figure 4-1. Example: CAVE Alert Observer
Figure 4-2. Spring Con�guration File (bufrmos-common.xml)
Figure 4-3. GFS Monitor Observer
Figure 4-4. Geospatial Data Generator
Figure 5-1. Standard AWIPS Data and Noti�cation Flow
Figure 5-2. CAVE to EDEX Interface Through Thrift
Figure 5-3. Manual Ingest Data Flow Using Distribution Server

Preface
This Software System Design Description (SSDD) provides AWIPS II software developers with a
reference of key information when developing code in the AWIPS II environment. The document is
topically organized, simple, and straightforward; using the Table of Contents is an easy way to �nd a
topic of interest.

This Preface provides a bit of background on the purpose and scope of the SSDD, assumptions
made about its users and uses, and the AWIPS II operational and development environments.
[Note: For a list of acronyms and abbreviations used in the SSDD, see Appendix A.]

SSDD Motivation, Assumptions, Contents
AWIPS II Environment, Development Approach, Driving Requirements

Overview
AWIPS II Architecture
Plugins
Use of ADE

RPM Overview

Common
EDEX, Common, and Viz (Visualization) Plugins
UFStatus
Localization
Dynamic Serialization
JAXB Serialization
TopoAccess
JMS and QPID
Creating a New PluginDataObject Derived Class
Point Data
GeoTools and JTS Use - Best Practices
Python
The Python Virtual Environment
IDataStore
Python Job Coordinator
Data Access Framework
Adding and Upgrading Java FOSS

EDEX
EDEX Camel Spring
Camel EDEX Adapters
Thread Pools - Usage of Generic Decoder
EDEX Data Routing
Persistence, Hibernate, Postgres, and CoreDao
EDEX Decoder Plugins
PluginRegistry
AWIPS II Data Purging
Request JVM
Clustering
AWIPS II deploy-install.xml
Logging Con�guration
Uframe feature.xml
Ignite

CAVE
RCP Framework
SWT
How to Write Dialogs for CAVE Classes

How to add performance logging in CAVE Classes
Menu Customization
CAVE Resources
CAVE Alert Observer
CAVE Features
CAVE Maps
CAVE - Right-Clicking In Editor
CAVE - Right-Clicking on the Legends

Derived Parameters
CAVE Graphics Tips
CAVE Performance Logging

Data Flow
Standard AWIPS Data and Noti�cation Flow
How Does Ingested Data Get Into CAVE?
Special Case Ingest Using Manual Dropped-in Files

Appendix A. Acronyms and Abbreviations

ADE Eclipse/AWIPS Development Environment

AMQP Advanced Messaging Queuing Protocol

API Application Program Interface

ARSR Air Route Surveillance Radar

ASR Aggregation Service Routers

AWIPS Advanced Weather Interactive Processing System

CAVE Common AWIPS Visualization Environment

CONUS Conterminous/Contiguous/Commercial United States

COTS Commercial off the shelf

D2D Display Two Dimensional

DAO Data Access Object

DVB Digital Video Broadcast

EDEX Enterprise Data Exchange

ESB Enterprise Service Bus

FOSS Free and Open Source Software

FQDN Fully Quali�ed Domain Name

GFE Graphical Forecast Editor

GFS Global Forecast System

GNU GNUs Not Unix

GRIB Gridded Binary

GUI Graphical User Interface

HDF5
Hierarchical Data Format 5-multi-object �le format for the transfer of graphical and
numerical data between computers

HQL Hibernate Query Language

HTTP Hypertext Transfer Protocol

JAR Java Archive

JAXB Java Architecture for XML Binding

JEP Java Embedded Python

JMS Java Messaging Service

JVM Java Virtual Machine

JTS Java Transaction Service

LDM Local Data Manager

LSB Linux Standards Base

MOS Model Output Statistics

MPE Multi-Programming Executive

NWS National Weather Service

OCONUS Outside Conterminous/Contiguous/Commercial United States

OSGi Open Services Gateway initiative

PDO Plugin Data Object

PYPIES Python Processing Isolated Enhanced Storage

QPID Queue Processor Interface Daemon

RCP Rich Client Platform

RGB Red, Green, Blue

RPM Redhat Package Manager

SOA Service Oriented Architecture

SBN Satellite Broadcast Network

SEDA Staged Event Driven Architecture

SHEF Standard Hydrometeorology Exchange

SQL Structured Query Language

SSDD Software System Design Description

SWT Standard Widget Toolkit

UDP User Datagram Protocol

UI User Interface

URI Uniform Resource Identi�er

UUID Universally Unique Identi�er

VIZ Visualization

XML eXtensible Markup Language

YUM Yellowdog Updater Modi�ed

CAVE Resources
Every item drawn on a display in CAVE is being drawn by a resource. A resource is divided into two
classes, the resource itself and the resource data. The resource data is responsible for constructing
the resource; it is also the part of the resource that is serialized when displays are saved, The
resource is responsible for actually drawing on the display.

Every resource must extend AbstractVizResource. Every resourceData object must extend the
AbstractResourceData. For data that is being displayed from PluginDataObjects it is often better to
extend AbstractRequestableResourceData because this class provides some additional help in
requesting and managing the data in D2D. The rest of this document will explain what needs to be
done to extend these Abstract classes in order to get a functional display in CAVE.

AbstractVizResource
All resources must extend AbstractVizResource. This is the class that is responsible for drawing data
on the display and any other user interaction. It should use information from the resource data to
determine what needs to be drawn.

There are three methods that must be implemented (paintInternal, initInternal, and
disposeInternal). There are other methods that can be overridden to provide more functionality.
Descriptions of �ve methods follow.

paintInternal. This is the reason you have a resource, to draw something on the screen. Use
the methods of the graphics target to draw whatever needs to be drawn. You should try to
avoid doing anything other than painting in this method; for example, requesting data over
the network or reading a �le should not be handled here, because doing so can lead to the
whole application hanging if it takes longer than expected. Often a Job is scheduled within
paint to handle these things, or they can be handled in initInternal.
initInternal. This method is called before the �rst time a resource is painted, and it is called in
a background thread. initInternal allows you to perform any tasks to prepare to paint. You
may need to request data or load �les in this method, or you may want to prepare some of
the graphics resources you will be using in paint. For simple or new resources, this method
may be very small or empty.
disposeInternal. This is the opposite of initInternal. It is the method called on a resource; the
resource will not paint after this. The most important thing here is to call dispose on any
graphics resources you may be using.
getName. This method allows you to set a name that is displayed in the legend; in D2D the
time will be appended to this name automatically by the legend resource.
Inspect. This is the method used to display information when sampling is enabled. If you
implement this method you should use the coordinate provided to �nd what you are
displaying under or close to that point and return a String containing any additional
information the user might be interested in.

AbstractResourceData vs.
AbstractRequestableResourceData
The two classes you might be extending for your resource data are AbstractResourceData and
AbstractRequestableResourceData.

If you are writing a data plugin to display data from PluginDataObjects, it is better to extend
AbstractRequestableResourceData. This is used for almost every datatype in D2D, including
satellite, grib, and radar.

For anything else you want to be displayed, you should extend AbstractResourceData. The best
example of this is maps, although some system resources also extend this, e.g., the colorbar and
legend resources.

AbstractResourceData
This is the base class for implementing a resource data; even AbstractRequestableResourceData
extends this class. The two tasks the resource data must perform are constructing the resource and
serializing any data needed to reload the resource from a bundle.

Constructing the resource can be as simple as calling returning a new resource object; it is usually
not much more complex than this.

To be serialized a resource data class will need xml annotations on any part of the resource data
that needs to be persisted. Also your resourceData class should be added to the
com.raytheon.uf.common.serialization.ISerializableObject �le.

Here is a brief description of the functions you will want to override if you extend this class.

construct. This is the method that generally does the most work; it just needs to return a
resource to draw on the display.
update. This function was meant to provide updates to your resource, but it is often unused,
except by AbstractRequestableResourceData (see the following subsection
AbstractRequestableResourceData).
equals. By implementing equals, a resource data can ensure that the same resource is not
loaded twice on one display. When two resource datas are equal, the descriptor will only
include one in the display.

AbstractRequestableResourceData
This is the class to extend if you are writing a data plugin for D2D. This class handles many of the
details needed to correctly time match and display in D2D.

AbstractRequestableResourceData works by providing a metadata map. This map limits what data
can be requested. When you create a resource data, either through a bundle or through the
product browser you will �ll in this map to limit what can be loaded for a resource. The metadata
map is used to populate menu times automatically for bundle menu items. The metadatamap is
used to retrieve available times for time matching. The metadatamap is used to request
PluginDataObjects for your resource.

When you extend this class you will not need to implement construct or update from
AbstractResourceData, instead you only need to implement constructResource. constructResource
serves the same basic purpose as construct in AbstractResourceData but it provides you with data
object that have already been retrieved and time matched for your resource. Most of the time this
class will construct a resource and add in the provided data objects before returning it.

When implementing a resource for AbstractRequestableResourceData, you will still extend
AbstractVizResource, but there are some extra things you can do to work smoothly in D2D:

Add an IResourceDataChanged listener to the resource data. Many resources simply
extend this interface themselves and add themselves as a listener. You should listen
speci�cally for DATA_UPDATE changes since this will contain any new data objects you need
to display. Updates will be sent automatically when new data arrives or if the user changes
frames or other time matching options
Manage the dataTimes list. Every time a new record is added, add the time to the list. The
default remove method will automatically remove old times so if you override remove be sure
to call super. The dataTimes list will be used by the time matcher along with updates and
remove to manage your data for you.
Get the current data time. In paint you will need to get the current data time from the
paintProps and display any matching records.

Resource Interfaces
There are various interfaces that resources may implement to add additional functionality,
depending on the needs of the resource:

IExtraTextGeneratingResource

IGraphableResource
IInsetMapResource
IHodographResource
IRangeableResource
IMiddleClickCapableResource

Use of ADE
The ADE is the Eclipse/AWIPS Development Environment. It is Eclipse RCP packaged with the
AWIPS II baseline plugins. It is where plugin development occurs. Documentation on how to use
the Eclipse in general can be found on the Eclipse documentation websites. How to install and set
up the ADE is provided in the AWIPS Flow Tag Instructions: ADE Setup guide (links to this and
other documents can be found in the AWIPS Release Documents wiki (/group/awips-
community/library#awips-release-docs)). This section covers certain aspects of the ADE that will
help with development.

Plugin Creation
The following subsections provide the steps required to create each type of plugin. There are
different steps for creating Common/EDEX, CAVE, and COTS/FOSS plugins.

Common/EDEX
�. File->New->Project…
�. Select Plug-in Development/Plug-in Project and click "Next" as shown in Figure 1-2.
�. Provide project name based on Plug-in Naming section as shown in Figure 1-3.
�. If default location of the plugin to be created is incorrect, replace with correct path. THIS

PATH MUST INCLUDE THE PLUGIN NAME.
�. If remaining default settings are suf�cient, select "Next."
�. Replace "Name:" section with a more descriptive name as shown in Figure 1-4.
�. UN-check "Generate an activator" and "This plug-in will make contributions to the UI."
�. Select "Finish."

CAVE
�. File->New->Project…
�. Select Plug-in Development/Plug-in Project and click "Next," as shown in Figure 1-2.
�. Provide project name based on Plug-in Naming section as shown in Figure 1-3. If default

location of plugin to be created is incorrect, replace with correct path. THIS PATH MUST
INCLUDE THE PLUGIN NAME.

�. If remaining default settings are suf�cient, select "Next."
�. Replace "Name:" section with a more descriptive name as shown in Figure 1-4.
�. CHECK "Generate an activator" and "This plug-in will make contributions to the UI."
�. Select "Finish."

COTS/FOSS
�. File->New->Project…
�. Select Plug-in Development/Plug-in from Existing JAR Archives and click "Next" as shown

in Figure 1-2.
�. Click "Add External…" and browse to the folder the COTS JARs are in, select them, and click

"Open" as shown in Figure 1-5.
�. Once all JARs are added, click "Next."
�. Provide project name based on Plug-in Naming section as shown in Figure 1-6.
�. If default location of plugin to be created is incorrect, replace with correct path. THIS PATH

MUST INCLUDE THE PROJECT NAME FROM STEP 5.
�. Replace "Plug-in Name:" section with more descriptive name.
�. UN-check "Unzip the JAR archives into the project."
�. Select "Finish."

https://vlab.noaa.gov/group/awips-community/library#awips-release-docs

Figure 1-2. Plug-in Development/Plug-in Project

Figure 1-3. Plug-in Project/Naming

Figure 1-4. Plug-in Project/Content

Figure 1-5. JAR Selection

Figure 1-6. Plug-in Project Properties

Plugin Dependency Management
Plugin dependencies are managed through the Eclipse MANIFEST Editor. It can be accessed by
opening the project �le: META-INF/MANIFEST.MF. This editor controls many plugin con�guration
settings, one being dependency management. To modify plugin dependencies, the MANIFEST �le
should be opened and the "Dependencies" tab should be selected as shown in Figure 1-7.

Figure 1-7. Manifest Dependencies Tab
The "Required Plug-ins" column on the left is the manifest's Required-Bundle: statement, and the
"Imported Packages" column on the right is the Import-Package: statement, when viewing
manifest, the source in the MANIFEST.MF editor tab. With an Imported-Package: there is no control
over what plugin the package comes from. This can cause problems when plugin dependencies
are automatically determined for builds/installation. For this reason, it is recommended that only
"Required Plug-ins" be used and "Import Packages" be ignored in most cases. Exceptions
include: javax.servlet, org.apache.commons.logging, org.apache.log4j where there are
multiple possible COTS/FOSS providing implementations of them. When developing a plugin
that will be used by other plugins, it is important to ensure the proper packages are visible to those
plugins. This is controlled through the "Runtime" tab in the manifest editor as shown in Figure 1-8.

Figure 1-8. Runtime Tab
The "Exported Packages" column on the left is the manifest's Exported-Packages: statement when
viewing manifest the source in the MANIFEST.MF editor tab. The packages listed in this section are
those that can be imported into another plugin's code when depending on the developed plugin.
Not all packages need to be imported; there are certain circumstances where packages may be
deliberately hidden from other plugins and only used internally. The "Package Visibility" and
"Classpath" sections should not be modi�ed in any way. Note: When a COTS/FOSS plugin is
created, the "Classpath" section will be prepopulated with the JARs selected during creation.

Helpful Eclipse Shortcuts
The following is a list of useful Eclipse shortcuts. The list is in no particular order, and it is not
exhaustive. The list assumes the key bindings have not been changed from the default.

Ctrl+L. Opens a dialog to enter a line number to jump to in the current editor.
Ctrl+G. Places in the Search tab all references in the workspace to the selected element.
Ctrl+T. Displays the type hierarchy of the selected element. If a class is selected, it shows the
full type hierarchy; if a class method is selected, it shows the hierarchy of classes that
extend/implement that method from the class type hierarchy as shown in Figure 1-9.

Figure 1-9. Type Hierarchy
F3. In the editor: Opens an edit window displaying the de�nition of the selected element. In
Package Explorer: Opens the selected �le in the editor.
Shift+Ctrl+L. Opens a list of the commands and shortcuts for quick execution. Repeating the
key command while this list is open brings up a preference window where all commands and
key bindings can be edited. Figure 1-10 displays the Shortcut List.

Figure 1-10. Shortcut List
Shift+Ctrl+T. When editing a Java �le, this shortcut pops up a dialog with "Open Type"
selected. Pressing the Enter key brings up the "Open Type" dialog. From there, a case-
insensitive search using wild cards for classes/interfaces can be performed. If a python editor
is active when performing the key binding, the "Pydev: Globals Browser" will be opened; it

performs a similar function on python �les. Figure 1-11 provides an example of �nding classes
with avn in the name.

Figure 1-11. Example Open Type Dialog
Shift+Ctrl+R. This shortcut displays the "Open Resource" dialog, which allows for case-
insensitive wildcard searches of all �les in the workspace. The example in Figure 1-12 shows
�les with con�g in the name that end with xml.

Figure 1-12. Example of Open Resource

Ctrl+H. Pops up the Search dialog with selected text populating the search text �elds for the
various tabs.
Shift+Ctrl+F. Formats the selected text. (Save Action will perform this for the whole �le when
code formatting is enabled in the section "Setup of Code Formatters and Save Actions.")
Shift+Ctrl+O. Organizes Imports. (Save Action will perform this if enabled.)
Ctrl+S. Saves the changes made in the �le in the active edit. When it contains a Java �le, the
save action is performed. (See the next section, Setup of Code Formatters and Save Action,
which follows.)

Setup of Code Formatters and Save Actions
It is important to maintain consistent code formatting/styling for the entire AWIPS II baseline. It
aids in keeping the code in compliance with Raytheon's AWIPS II coding standards, and it allows
developers across organizations to compare changes made to �les easily. For this reason, an eclipse
template and code formatting �le are provided in the baseline and should be imported for use.

Follow these steps to import the AWIPS II Code Template and Formatter (see Figures 1-13, 1-14, and
1-15):

�. In the ADE, select the menu item Window --> Preferences.
�. Select Java/Code Style/Code Templates on the left and select "Import…" on the right.
�. In the import browser, browse to the AWIPS II EDEX plugin directory path (e.g.,

/home/user/AWIPSII/edexOsgi/). From there, browse to build.edex/opt/eclipse/ and select the
codeTemplate.xml �le and select "Apply."

�. Select the "Formatter" section on the left and import the formatter.xml �le from the same
location as codeTemplate.xml and select "Apply."

�. On the left, select Java/Editor/Save Actions.
�. To enable formatting on Save, make sure the following are selected/checked:

Perform the selected actions on save
Format source code
Format all lines
Organize Imports

�. Select "Apply" and then "OK."

Figure 1-13. Code Templates

Figure 1-14. Formatter

Figure 1-15. Save Actions

RPM Overview
Redhat Package Manager (RPM) is the package manager. It is a program designed to build and
manage packages of software including the source and binaries. It is portable and can be run on
different platforms.

RPMs (*.rpm) typically include the compiled programs and/or libraries needed for the package,
documentation, install, verify, and uninstall scripts, and cryptographic signatures for each �le in the
package. This makes it easy to verify the integrity of the package. It also includes a list of packages
that it depends on, and a list of services that are provided by the package.

RPM maintains a database of all installed packages in /var/lib/rpm/*. Included in the database is a
list of �les installed by the RPM and which package they belong to. This makes it a very powerful
tool for �nding out more about each package.

Sources are often provided in source RPMs (*.src.rpm or *.spm). These sources include the pristine
developer source code, any patches applied by the package builder, and a SPEC �le that is used to
tell RPM how to compile the package.

Note: Root privileges are required to install, upgrade, or remove RPM packages. RPM queries can
be run as any user.

Most major Linux distributions utilize RPM Package Manager format, including Red Hat (which is
the primary AWIPS II Linux distribution), SuSE, and Caldera. Any Linux distribution considered Linux
Standards Base (LSB) compliant must supply applications either packaged in the RPM packaging
format as de�ned in the LSB speci�cation, or supply an installer which is LSB conforming (for
example, calls LSB commands and utilities).

Common RPM Commands
To interact with RPMs, use the rpm executable (/bin/rpm). The rpm command is standard on most
Linux distributions. The rpm executable is used to install, update, and remove packages as well as
to execute queries for information about packages.

To install an RPM, use: rpm -ivh ${RPM}
To update / upgrade an RPM, use: rpm -Uvh ${RPM}
To remove an RPM, use: rpm -e ${RPM}
To execute an RPM query, use: rpm -q … (there are multiple query types that can be
executed utilizing the -q argument).

Building RPMs
A specs �le is used to create an RPM. A specs �le essentially consists of a header with basic
information about the RPM, one or multiple scriptlets that are run during various phases of the
build / install, and a list of �les included in the RPM.

The commonly used tags and descriptions of each tag are provided in Table 1-1. Note that some
tags are required. These are designated in the table.

Table 1-1. Tags Commonly Used in Building RPMs

Tag Required Tag Description

Name: ✓ The name of the package.

Summary: ✓ A basic summary of what the package is and its purpose.

Version: ✓
The package version. The version is in the format X.Y.Z where it is the
major release, Y is the minor release, and Z is the revision.

Release: ✓ The package release. The package release is generally an integer.

Group: ✓ Group is used to specify the package type.

BuildRoot: ✓
A temporary directory that will be used to assemble the package. The
buildroot makes it possible to assemble the package without
compromising / altering your root �le system.

URL: ✓ A link to a website about the package or etc.

License: ✓ The license associated with the RPM package.

Distribution: ✓

Vendor: ✓ The company and/or group that created the package.

Packager: ✓ The package author.

provides:
The packages and/or services the RPM provides. Every individual
package or service requires a separate "provides" tag.

requires:
A list of the packages and/or services that are required by the RPM.
Every individual package or service requires a separate "requires" tag.

%description ✓ A description of the RPM package.

%prep

This scriptlet is executed during the RPM build. This scriptlet contains
instructions for the �rst phase of the build. The �rst phase is generally
used to gather and unpack source and other dependencies that are
required to build the RPM.

%build

This scriptlet is executed during the RPM build. This scriptlet contains
instructions for the second phase of the build. The second phase is
generally used to build the source code (running con�gure and/or
make, etc.).

%install
This scriptlet is also executed during the RPM build. This scriptlet
contains instructions for the third and �nal phase of the build.

%pre
This scriptlet is executed during installation. This scriptlet is run
before the package �les are placed on the �lesystem.

%post
This scriptlet is also executed during installation. This scriptlet is run
after the package �les are placed on the �lesystem.

%preun
This scriptlet is executed during uninstallation. This scriptlet is run
before the package �les are removed from the �lesystem.

%postun
This scriptlet is also executed during uninstallation. This scriptlet is
run after the package �les are removed from the �lesystem.

%�les
A list of the �les that are included in the package. File attributes
including owner, group, and �le permissions can also be speci�ed as
part of this tag.

Once a specs �le has been created, the rpmbuild application (/usr/bin/rpmbuild) can be used to
actually build an RPM. The rpmbuild application is not installed by default on every Linux
distribution and must be installed before it can be used.

To build an RPM using rpmbuild: rpmbuild -ba ${SPECS}

If the rpmbuild is successful, the RPM that was built can be found within one of the architecture-
speci�c directories {generally one of: [i386, noarch, x86_64]} in: /usr/src/redhat/RPMS.

Using YUM
When the RPM executable is used to install one or multiple rpms, it is the responsibility of the user
to ensure that the RPMs are installed in the correct order when installing multiple RPMs, as well as
accounting for all dependencies. This is not a dif�cult task when there are just a few RPMs;
however, if there are dozens of RPMs (and there are close to 100 AWIPS II RPMs) installing all of the
RPMs can become a time-consuming task that requires multiple commands. One solution to
managing multiple package installations is Yellowdog Updater Modi�ed (YUM).

YUM is an open-source command-line package-management utility for RPM-compatible Linux
operating systems and has been release under the GNUs Not Unix (GNU) General Public License.

YUM is capable of installing one or multiple RPMs from a YUM repository or directly from the
�lesystem. Unlike RPM, YUM is capable of determining dependencies between RPMs and will
install the RPMs in the correct order based on the dependencies. So, instead of using multiple rpm
commands to install two or more RPMs, a single YUM command can be used.

The AWIPS II RPMs
There are more than 100 AWIPS II RPMs including 32-bit (i386), any architecture (noarch), and 64-
bit (x86_64) RPMs. The AWIPS II RPMs have been divided into four "classes": core RPMs, EDEX
RPMs, CAVE RPMs, and python extension (site-package) RPMs.

The core RPMs are RPMs that every other type of RPM is dependent on in some way. The following
AWIPS II RPMs are included in the set of core RPMs: awips2-java, awips2-python, awips2-postgresql,
awips2-database, and several others.

The EDEX RPMs include the edex-base RPM (consists of the EDEX directory structure as well as the
edex con�guration and scripts) and the edex component RPMs. The EDEX component RPMs divide
the EDEX plugins into functional subsets: there is an EDEX component RPM that contains core
plugins and another edex component RPM that contains radar plugins. The component RPMs
make it possible to apply a patch or an enhancement to a single portion of edex to avoid the need
for a complete reinstall.

The CAVE RPMs include the CAVE RPM (consisting of the CAVE RCP executable, cave scripts, and
the cave directory structure) and CAVE p2 repository RPMs. The CAVE p2 repository RPMs extend
the cave rcp executable and contribute functionality. Similar to the EDEX component RPMs, the
CAVE p2 repository RPMs make it possible to apply a patch or an enhancement to a single
functional portion of cave to avoid the need for a complete reinstall.

The python extension RPMs extend the functionality and capability of python when installed.
Examples of the python site-package RPMs include awips2-python-numpy, awips2-python-ufpy,
and awips2-python-nose.

Persistence, Hibernate, Postgres, and CoreDao

Postgres Database (v11.14)
EDEX uses Postgres as the repository for storing metadata extracted during the data ingest
process. The database also contains the text database, the maps database, and the hydro database.

In a typical AWIPS II installation, the Postgres database, by default, is installed on the dv1 server
under the /awips2/postgresql directory. For typical development purposes, the contents of this
directory are not signi�cant as most development can be carried out without concern for the
underlying database con�guration. Nevertheless, a few items in this directory may be of some
importance. The following is an overview of some important directories and �les in the postgres
installation.

/awips2/postgresql/bin
start_developer_postgres.sh and start_postgres.sh. Either of these scripts can be used
to start the postgres server on a development workstation.
Psql. This is the command line interface for interacting with the postgres database. A
typical usage of this command to connect to the metadata database is as follows: psql -
d metadata -U awips -h dv1. You would then enter the password for user awips which is
awips. Once connected, you are now able to interact with the database using SQL or the
set of meta-commands provided by psql. Detailed documentation about using psql
and psql's meta-commands can be found here: https://www.postgresql.org/docs/11/app-
psql.html (https://www.postgresql.org/docs/11/app-psql.html)
Further documentation about the client applications in this directory can be found
here: https://www.postgresql.org/docs/11/reference-client.html
(https://www.postgresql.org/docs/11/reference-client.html).

/awips2/postgresql/doc. This directory contains a complete set of html documents detailing
the usage of postgres.
/awips2/postgresql/include. This directory contains code used internally by postgres and
should not be manually modi�ed
/awips2/postgresql/lib. This directory contains libraries used by postgres and should not be
manually modi�ed
/awips2/postgresql/man. Unix man pages for client applications included in the postgres
installation.

The /awips2/data directory is used by postgres to store table information (schemas, tablespaces,
etc.) and user con�gurable �les. Some important directories and �les contained in this directory
are:

/awips2/data/postgresql.conf. This �le controls a number of items de�ning how Postgres
behaves behind the scenes including memory usage, logging, and querying. Modifying items
in this �le can have signi�cant performance implications. Therefore, modi�cations should be
carefully considered. A series of documentation explaining the various con�guration items
contained in this �le is here: http://www.postgresql.org/docs/8.3/static/runtime-con�g-�le-
locations.html (http://www.postgresql.org/docs/8.3/static/runtime-con�g-�le-locations.html)
/awips2/data/pg_hba.conf. This �le controls client connection permissions and
authentication. Detailed documentation about this �le and other client authentication
concerns can be found here: http://www.postgresql.org/docs/8.3/static/client-
authentication.html (http://www.postgresql.org/docs/8.3/static/client-authentication.html)
/awips2/data/pg_log. This directory contains the postgres logs. Logging behavior can be
enabled/disabled and modi�ed in the aforementioned postgresql.conf �le.
The complete set of documentation for Postgres 11 is located here:
https://www.postgresql.org/docs/11/index.html
(https://www.postgresql.org/docs/11/index.html).

https://www.postgresql.org/docs/11/app-psql.html
https://www.postgresql.org/docs/11/reference-client.html
http://www.postgresql.org/docs/8.3/static/runtime-config-file-locations.html
http://www.postgresql.org/docs/8.3/static/client-authentication.html
https://www.postgresql.org/docs/11/index.html

PGAdmin4
PGAdmin4 is a graphical interface to view postgres databases. Refer to the PGAdmin4
documentation for usage details: http://www.pgadmin.org/docs/ (http://www.pgadmin.org/docs/)

Hibernate
At a very high level, Hibernate is a COTS product that can be used to map Java classes to a
relational database. This effectively removes the user/developer from being concerned with
constructing complex and sometimes confusing SQL commands to interact with persistent data
and focus more on the behavior and interactions of Java objects. AWIPS II currently uses Hibernate
v5.4. Detailed documentation about Hibernate can be found here:
http://docs.jboss.org/hibernate/core/3.5/reference/en-US/html/
(http://docs.jboss.org/hibernate/core/3.5/reference/en-US/html/)

Con�guring Hibernate
Hibernate is injected into EDEX via the /awips2/edex/conf/spring/edex.xml �le. In this �le,
SessionFactory objects are de�ned for each database currently in use. The Hibernate
SessionFactory object is the critical link between a persistent Java class and the database. The
SessionFactory gets database connections, controls transactions, and generates the SQL
statements from the provided Java objects.

The SessionFactory uses a con�guration �le to con�gure how it is going to connect and interact
with the database. These con�guration �les are located at /awips2/edex/conf/db/hibernateCon�g.
Each database uses its own SessionFactory and therefore each database has its own hibernation
con�guration �le. For example, the con�guration �le for the metadata database is located here:
/awips2/edex/conf/db/hibernateCon�g/metadata/hibernate.cfg.xml. Detailed information about
the options available for use in this document can be found here:
http://docs.jboss.org/hibernate/core/3.5/reference/en/html/session-con�guration.html
(http://docs.jboss.org/hibernate/core/3.5/reference/en/html/session-con�guration.html)

Database connection pooling is also used. A package called c3p0 is used for this purpose. The c3p0
connection pooling parameters are de�ned in the hibernate.cfg.xml �les mentioned above. The
parameters available are described here: http://www.mchange.com/projects/c3p0/index.html
(http://www.mchange.com/projects/c3p0/index.html). See Appendix C in that document for
information about using c3p0 with Hibernate.

The SessionFactory must be made aware of which classes are to be mapped to the database. These
classes may be speci�ed in the SessionFactory Spring bean de�nition. Since EDEX was designed to
be extensible via data type plugins, this approach was insuf�cient. As a result, EDEX dynamically
determines the set of mapped classes at startup. The
com.raytheon.uf.common.serialization.SerializableManager class scans the class path for classes
with the javax.persistence.Entity (@Entity) annotation. Any classes found with that annotation are
included in the SessionFactory.

Adding Hibernate Annotations
Hibernate provides two methods for mapping classes, con�guration �les and annotations. AWIPS II
uses annotations for mapping. For informational purposes, information about using con�guration
�les for mapping classes can be found here:
http://docs.jboss.org/hibernate/core/3.5/reference/en/html/mapping.html
(http://docs.jboss.org/hibernate/core/3.5/reference/en/html/mapping.html)

Detailed information about mapping classes using annotations is located here:
http://docs.jboss.org/hibernate/annotations/3.5/reference/en/html_single/
(http://docs.jboss.org/hibernate/annotations/3.5/reference/en/html_single/).

A few highlights of the most important annotations follow.

@Entity. The @Entity annotation must be attached at the class level. The @Entity annotation
is used to make the class Hibernate aware.

http://www.pgadmin.org/docs/
http://docs.jboss.org/hibernate/core/3.5/reference/en-US/html/
http://docs.jboss.org/hibernate/core/3.5/reference/en/html/session-configuration.html
http://www.mchange.com/projects/c3p0/index.html
http://docs.jboss.org/hibernate/core/3.5/reference/en/html/mapping.html
http://docs.jboss.org/hibernate/annotations/3.5/reference/en/html_single/

@Table. The @Table annotation must be attached at the class level. The @Table annotation is
used to specify the table name, catalog, schema, and any unique constraints. All attributes on
the @Table annotation are optional.
@Id. The @Id annotation attached to the property in the Java class that is to be used as the
primary key for the associated database table. All classes mapped with the @Entity
annotation must have an @Id parameter speci�ed (except in the case of a complex key or an
embedded object)
@Embeddable. The @Embeddable annotation is placed at the class level. The
@Embeddable annotation informs Hibernate that this class is not mapped to its own table.
Instead, the properties contained in this class will be included in the containing class'
database table
@Embedded. The @Embedded annotation is placed at the property level. The @Embedded
annotation means that the columns speci�ed by an @Embeddable class are to be included in
this class's database table
@Column. The @Column annotation is placed at the property level (or on the getter for that
property). The @Column annotation is used to give Hibernate hints about how to create the
associated column in the database. Hibernate is able to dynamically �gure out the associated
column type based on the Java type in most cases (i.e., String maps to varchar, int maps to
integer). The @Column annotation is implied (using Hibernate derived defaults) for all
properties in an @Entity annotated class. In other words, if you do not explicitly annotate a
property with the @Column annotation, Hibernate will map the property for you anyway.
@Transient. The @Transient annotation is placed at the property level. The @Transient
annotation tells Hibernate not to include this property in the database mapping.
@Index. The @Index annotation is placed at the property level. The @Index annotation tells
Hibernate to create a database index based on the this property.
@Type. The @Type annotation is placed at the property level. This annotation is used in the
case that you have speci�ed a property type that cannot be automatically determined by
Hibernate. The @Type annotation expects you to give it the FQN of an implementation of
org.hibernate.usertype.UserType. A UserType implementation details how Hibernate should
transform the class into a form that can be inserted into and retrieved from the database.

An example of this is the utilityFlags property in
com.raytheon.uf.common.time.DataTime. The type is de�ned as
com.raytheon.edex.db.mapping.DataTimeFlagType which is an implementation of
org.hibernate.usertype.UserType.

Data Access Objects
Data type plugins may specify their own data access objects for data access. The
com.raytheon.uf.edex.database.dao.CoreDao is used as the base class from which all other data
access objects inherit. The CoreDao constructor takes a
com.raytheon.uf.edex.database.dao.DaoCon�g object, which speci�es which session factory to
use (essentially tells the dao which database to look at). Once a CoreDao object has been
instantiated, it may be used to insert, delete, update, and query data from the database.

There are several methods available for inserting data into the database. These are create, persist,
persistAll, saveOrUpdate, and mergeAll. The create method saves an object that has not been
previously inserted into the database. The persist, persistAll, and saveOrUpdate methods save (or
update if previously saved) objects into the database.

Users have the option of using several different methods for querying data:

executeSQLQuery and executeNativeSQL. Users may submit SQL strings to directly query
the underlying database structure
executeHQLQuery and executeHQLStatement. Hibernate provides its own query language
for querying objects. The Hibernate Query Language (HQL) language is similar to Structured
Query Language (SQL). Documentation on HQL can be found here:
http://docs.jboss.org/hibernate/core/3.5/reference/en/html/queryhql.html
(http://docs.jboss.org/hibernate/core/3.5/reference/en/html/queryhql.html). The
executeHQLQuery is used for querying the database and the executeHQLStatement method
is used for all other non-query (i.e. insert, update, etc.) statements.

http://docs.jboss.org/hibernate/core/3.5/reference/en/html/queryhql.html

queryByCriteria. There are several queryByCriteria methods available on CoreDao. These
methods expect a com.raytheon.uf.edex.database.query.DatabaseQuery object to be
submitted.

The DatabaseQuery object allows users to easily specify which parameters to query for.
The constructor of the DatabaseQuery expects the developer to specify which class they
are querying for. Developers may use the addQueryParam methods to specify the
name, value and operator used to query on. The addReturned �eld speci�es which
�elds are to be returned from the query. Note that when adding query parameters and
returned �elds, the names used are those contained in the Java class and not the
database column names. It is worth noting that attempting to do queries using table
joins using the addJoinField on the DatabaseQuery class will not yield correct results.
An example use of queryByCriteria:

If the basic methods in CoreDao are insuf�cient for the needs of a data type plugin, a developer
may extend CoreDao and implement additional methods. Otherwise, CoreDao may be instantiated
and used out of the box.

LambertConformalGridCoverage coverage = (LambertConformalGridCoverage) grid;

DatabaseQuery query = new DatabaseQuery(this.daoClass);

query.addQueryParam("dx", coverage.getDx());

List<LambertConformalGridCoverage> result = (List<LambertConformalGridCoverage>) qu
eryByCriteria(query);

Ignite

What is ignite
Ignite is an in memory cache. It is used in AWIPS to store large data objects quickly and reliably.
The previous solution was PyPies which had disk and network bottlenecks. Ignite solves these
problems by storing data in memory to avoid disk and it is clustered which avoids the network
bottleneck. PyPies is still used for persistent storage with ignite acting as a cache between PyPies
and the other services.

High level Architecture
Ignite will be inserted as a caching layer between PyPies and other processes that access PyPies
(primarily CAVE and EDEX). When new data comes into the system it will be stored into Ignite and
then be immediately available to be read out of Ignite. In the background Ignite will store the data
back into PyPies. Ignite is holding all the data in memory, so when memory is needed then data
that is already stored in PyPies will be dropped from the Ignite cache. If this data is requested later
then it will be read from PyPies and stored back in the cache. When the system is restarted Ignite
will start out empty and accumulate data from new store operations and reading data back from
PyPies as needed.

Ignite will be operating as a cluster on the new hardware. Each physical server will be running a VM
dedicated to running an ignite instance. Each piece of data will be stored on two different ignite
instances which ensures that the overall system can continue operation even in the event of a
single hardware failure. WFOs run with 3 ignite server nodes, and National Centers run with 6 ignite
server nodes. Ignite consistently failed with obscure error messages at National Centers with a 6-
node cluster, so only 3-node clusters are used in both cases. Thus, WFOs have a single ignite cluster
consisting of the cache1-3 VMs, whereas National Centers have 2 clusters, one consisting of cache1-
3, and another consisting of cache4-6.

To maximize compatibility there is a servlet within EDEX that is able to emulate a PyPies server and
handle any requests in the same way that PyPies currently does. This is necessary to support things
like the CAVE Thin Client which uses an HTTP proxy to communicate between CAVE and PyPies
making it impossible to communicate using the native ignite protocols. This compatibility layer will
be used for all communications with any application that currently accesses PyPies except EDEX.
To maximize performance, EDEX will load the ignite library directly and operate as an ignite node
running in client mode. This will allow EDEX to connect to the ignite cluster using ignite internal
protocols. CAVE will be able to load data from ignite by hitting any of the EDEX servlets with PyPies
style requests.

Figure 3.6: Ignite High-Level Architecture

Ignite cluster, node, and cache structure
Each instance of ignite that's running is called a node. There are server nodes and client nodes. In
our case, the server nodes are the standalone ignite instances that are running on the cache VMs.
These are the nodes where data is actually cached, and that access PyPies behind the scenes to
interact with the persisted data. The client nodes are instances of ignite that are ran within EDEX,
which essentially provide ways to interact with the server nodes to retrieve or modify data.

A group of ignite nodes that know about each other is called a cluster. In our case, we have either 1
or 2 clusters, depending on if the system is a WFO or a National Center. Each EDEX instance that
interacts with ignite will then have 1 or 2 ignite clients, 1 for each cluster.

Within a single cluster, there can be multiple caches for different types of data, not to be confused
with the cacheN VMs. Currently we have separate caches for grid, satellite, radar, and point data,
along with a default cache for everything else. Each cache is spread across all server nodes. Ignite
lets you specify an af�nity function which is used to determine which server node a particular piece
of data goes to. In our case, the af�nity function is based on the hdf5 �le path that the data goes in,
so all data for a single �le goes to the same node.

In a standard single cluster system, all of these caches are naturally in the one cluster. In a dual
cluster con�guration, the grid cache is mapped to the second cluster, while all others go in the �rst
cluster.

The below diagrams outlines this structure for a single EDEX JVM with a 2 cluster system.

Figure 3.7: Ignite Cluster and Cache Structure

Running ignite service
Ignite is installed as a systemd service. The service calls into the a2_ignite.sh script which contains a
variety of con�gurable parameters.

The service and the script take a single argument that speci�es a group of con�guration options.
The two base modes are:

production - Run using more memory and with a cache backup
developer - Run using less memory and without a cache backup

There is one additional option that can be provided:

debug - Allow socket connections from a java debugger, this will allow a debugger to connect
on port 5102

For example to start/stop ignite in production mode would look like this:

For a developer who wants to debug the ignite service, the start/stop commands would instead
look like this:

Con�guring ignite
Generally for con�guration changes to take effect, all ignite nodes (clients and servers) must all be
shutdown together, and then all started back up. If each node is restarted individually, then the
nodes that stay up while one node is restarted will remember the old con�guration and tell the
restarted node to continue using it.

Note that some of the setup.env variables mentioned below are auto-con�gured in
component.spec �les (awips2-ignite component.spec for servers, and awips2-edex-con�guration
for clients).

systemctl start ignite@production
systemctl stop ignite@production

systemctl start ignite@developer-debug
systemctl stop ignite@developer-debug

Server nodes
If you need to change some of the settings in ignite for a particular instance you can override the
systemd unit con�guration. For example to change the settings to increase the max data region
size on a developer ignite, you could run this command:

Set the contents to something like this:

And then run the service normally.

To see what settings can be changed from the environment look at the start script in
/awips2/ignite/bin/a2_ignite.sh.

Additional environment settings are also con�gurable in /awips2/ignite/bin/setup.env. There are
variables for con�guring the cluster that this particular server is a part of. There is also a
LOCAL_ADDRESS variable to tell other ignite nodes how to communicate with this ignite server.
This is necessary to prevent an ignite node from identifying itself as a value that doesn't uniquely
identify it, such as ev-cache. Finally, there are values for setting up qpid and jms, which should
match the con�guration values in EDEX's setup.env.

Most environmental settings are used in spring xml located at /awips2/ignite/con�g/awips2-
con�g.xml. This spring also has additional settings that have been chosen for the awips use case.
The ignite documentation (https://ignite.apache.org/docs/latest/) has extensive examples and
descriptions of the various options for con�guring ignite in spring.

Client nodes
Since EDEX is running as an ignite client node, there are various ignite speci�c settings within
EDEX. First in /awips2/edex/bin/setup.env there is the DATASTORE_PROVIDER which can be set to
ignite or pypies. setup.env also contains variables for con�guring the ignite clusters to run with.
There are also variables for con�guring the PyPies compatibility server location. Finally, there is a
LOCAL_ADDRESS variable like in ignite's setup.env, to ensure that each ignite node tells the other
nodes to communicate with it via a valid address.

Next there is /awips2/edex/conf/spring/edex-datastore.xml which contains the spring con�guration
for ignite. Since edex is in client mode it does not need as much con�gurations for the ignite
process itself but the many of the con�guration options are the same as those used in awips2-
con�g.xml. The con�guration of each data-speci�c cache is in this �le as well, along with registering
each cache with cluster 1 or 2. Also note that there are 2 ignite con�guration beans in this �le, but
an actual ignite instance is only created for the second cluster con�guration if
IGNITE_CLUSTER_2_SERVERS is non-empty.

Additionally within some plugin spring �les there is an optional element to con�gure a speci�c
cache for that plugin. If this is not present a plugin will use the default cache. If too many caches
are used then starting and stopping ignite and edex will be slower and there will be more
internode communication required to manage the caches so we try to keep the number of
dedicated caches small. However for the plugins with the most data there are some performance
problems if they share the same cache and compete for resources so it is necessary to allow some
plugins to store to their own cache. An example fo the plugin speci�c cache con�guration is below:

sudo systemctl edit ignite@developer

[Service]
Environment=IGNITE_DATA_REGION_MAX_SIZE_GB=4

<bean factory-bean="ignitePluginRegistry" factory-method="registerPluginCacheName">
 <constructor-arg value="grid" />
 <constructor-arg value="gridDataStore" />
</bean>

https://ignite.apache.org/docs/latest/

Finally, there is some con�guration within EDEX modes �les. For EDEX modes that use ignite, they
specify communication and discovery ports for each cluster, such as in request.sh. For EDEX modes
that don't use ignite, they disable it by setting DATASTORE_PROVIDER to pypies, such as in
centralRegistry.sh.

Low level Design

Overview
Most code interacts with ignite through the IDataStoreFactory interface. This allows code to be
written that can work with either PyPies or ignite or another future IDataStoreFactory. This also
allows shared code to access ignite directly on EDEX while using PyPies in CAVE.

For ignite, the IgniteDataStoreFactory essentially maps an HDF5 �le name to a cache and cluster
combination, and then creates an appropriate IgniteDataStore instance for that cache and cluster.
For example, an obs data �le is mapped to the point cache and cluster 1. The IgniteDataStore
instance itself is essentially just a wrapper around an IgniteCache that translates the IDataStore
calls into cache operations. The key used in the cache is a DataStoreKey, which is a combination of
the �le path and the group name. The value stored in cache is a DataStoreValue, which just wraps
an array of IDataRecord.

Most code does not access ignite APIs directly, as its access is instead centralized in helper classes.
These helper classes wrap the ignite APIs to provide consistent timeout, exception, and retry
handling for all ignite operations. The main helper classes are AbstractIgniteManager and its
client/server implementations for top-level ignite access, along with IgniteCacheAccessor for
cache-level access. Each of these contain do*Op methods that provide convenient access to
Ignite/IgniteCache instances while wrapping the operation in exception handling.

PyPies compatibility servlet
The PyPies compatibility is implemented as a servlet that is independent of Ignite and can serve
PyPies from any IDataStore implementation. The PyPiesCompatibiltyService runs within EDEX and
instantiates a PyPiesServlet with the same IgniteDataStoreFactory used elsewhere in EDEX, which
interacts with the actual ignite clusters in the same way. When CAVEs or other services that don't
know about ignite ask EDEX for the PyPies server, EDEX lies to them in GetServersHandler so that
the requests are rerouted to this servlet, which then reroutes them to ignite.

Ways to interact with servers from clients
There are three main ways to interact with servers/caches from ignite clients: key/value operations,
entry processors, and computes.

Key/value operations let you interact with a cache as you would with any map implementation.
These are done via IgniteCache methods such as put, get, and getAndPutIfAbsent. Cache entry
locking is automatically handled.

EntryProcessors are used via the various IgniteCache.invoke methods. These allow the cache
operations to be encapsulated in a single object that is sent to the ignite server nodes to perform
an operation which is often faster than trying to perform cache operations locally. When doing this,
the processor is then executed on the server node that corresponds to the given key. The processor
automatically loads the data value for that key, either from the cache or by reading it through from
PyPies, and allows you to then work with the cache value or modify it. It also automatically locks
the cache entry for the duration of the processor. However, the fact that it automatically loads the
data value may not be preferable performance-wise for operations that don't always need it.

The IgniteCompute interface is accessed via Ignite.compute. This allows more free-form access to
the server nodes, as you can provide any Runnable/Callable to execute, and no automatic data
loading or locking is done.

Examples of each of these options are available in AWIPS' usage of ignite.

Handling point data
Point data is particularly problematic for ignite because it continually appends to the same data
record, usually starting over every hour. Because of this ignite must constantly be loading the
entire data record, appending, and then storing back. Throughout this repeated operation will slow
down. This is a case where it is critical to use an EntryProcessor to avoid sending all the data across
the network for all operations. Also all pointdata plugins are automatically placed in a dedicated
cache to avoid impacting other plugins when operations slow down late in the hour.

Determining where data goes in ignite
In short, data plugins are mapped to a cache for a general data type, which is mapped to a cluster.
For example, the obs and pirep plugins are mapped to the point data cache, which is mapped to
the �rst cluster. There is also a default data cache that any unregistered plugins use. Note that the
cache-to-cluster mapping is only relevant at National Centers where 2 clusters are used. Currently
the grid cache is mapped to the second cluster and all other caches use the �rst cluster.

The plugin-to-cache mapping is handled by CachePluginRegistry, while the cache-to-cluster
mapping is handled by IgniteClusterManager.

Each cache within a cluster is spread across all server nodes in that cluster. An af�nity key is used to
determine which node a particular data piece goes to. In our case, the af�nity key is the hdf5 �le
path that the data will be stored to, so all data for a single hdf5 �le will go to the same server node.
The af�nity key is determined by the af�nity annotation on DataStoreKey.path.

Exception handling
There are two main ways that exceptions are handled/prevented in our usage of ignite. The �rst is
via the centralized ignite API access mentioned earlier, which provides consistent timeout,
exception, and retry handling for all ignite operations.

Exceptions are also handled by con�guring all ignite nodes to restart on critical failures. On the
server side, this is handled at the end of a2_ignite.sh by code copied from the ignite-provided
ignite.sh, along with setting the failure handler to ignite's built-in RestartProcessFailureHandler in
awips2-con�g.xml. On the client side, ignite's built-in RestartProcessFailureHandler doesn't work
since the client node isn't started up from the command-line like the server nodes. Instead, a
custom IgniteClientFailureHandler is con�gured to restart the ignite client when necessary.

Write behind and data batching
Ignite allows for each cache to use either write through or write behind behavior. Write through
mean that each data storage operation updates the cache and writes the data through to PyPies as
a single atomic operation. Write behind means that each data storage operation simply updates
the cache and returns, and ignite then asynchronously writes the data through to PyPies.

Each cache can be con�gured differently for this, starting with whether to use write through or
write behind. When using write behind, there are extra options such as how many write behind
threads to use, how often write behind should occur, and the maximum size of each write behind
batch. Generally write behind is preferred for performance, although it introduces some issues
discussed in the following section. The con�guration of these values is in edex-datastore.xml.

Whether using write through or write behind, the DataStoreCacheStore class is used to tell ignite
how to interact with the persistent data store (PyPies).

The internal ignite class that is primarily responsible for handling write behind is
GridCacheWriteBehindStore. Within GridCacheWriteBehindStore, a con�gurable number of �usher
threads wake up at the con�gured interval to check if there's data to �ush. If so, those threads all
race to grab what they can from the pending write cache, then apply the entries they grabbed by
telling DataStoreCacheStore to write them through. If one thread gets behind, the other threads
will still go ahead and start working on the next batch at the next interval. When a value is
successfully written through, it is then removed from the pending write behind cache.

The write behind logic also has �ush size and critical size threshold values. Each time an entry is
added to the write behind cache, the cache size is checked. If it exceeds the �ush size, then all the
�usher threads are immediately woken up to write behind entries. If the critical size is exceeded,
then a single entry is immediately written through on the current thread. Thus, it temporarily
switches to write through to prevent the write behind cache from getting too large. This helps slow
down ingest when necessary to prevent running out of memory.

Data storage auditing
Before ignite, the database and data store were automatically kept in sync by the order of
operations. A data storage operation would attempt to store the raw data directly to PyPies �rst. If
this succeeded, it would then proceed to store the metadata to the database. If the PyPies write
failed, an exception would be thrown that would prevent the metadata from being written, which
keeps things in sync. Now, when a data storage operation writes to ignite, it simply puts the raw
data in its cache and returns that it succeeded, which allows the metadata to be written to the
database. When ignite later attempts to write the raw data through to PyPies, this can fail and
cause things to be out of sync.

To resolve this, a centralized data storage auditer runs in a single EDEX JVM. Each data storage
operation has a unique trace ID, and the key parts of the storage operation are sent to the auditer,
which compares the success or failure of the different pieces and deletes the metadata or raw data
if necessary to keep things in sync.

Because point data has to track the index that it was stored at in a particular hdf5 �le, this auditing
is not suf�cient to correct the index values on an hdf5 storage failure. As a result, point data uses
write through instead of write behind.

The main relevant code areas for this are IDataStorageAuditer and its implementations,
DefaultDataStorageAuditListener, DataStorageAuditEvent, and PersistableDataObject.traceId.

Ignite internal caches and locking
For a single ignite cache (e.g. the grid data cache), there are two main caches in the code, the main
cache and the write behind cache. When a particular data value is looked up, the main cache is �rst
checked. If it's not found there, then the pending write behind cache is checked. If it's not found
there, then it is read through from PyPies.

The main cache and the write behind cache each have their own separate locks, although both
locks are on a per-key basis. So two threads cannot work with the same key in the main cache at
the same time, but one thread can be working with a key in the main cache while another thread
works with the same key in the write behind cache. There are no shared references between the
two caches, so this is safe. For write-through ignite caches, the main cache lock is held the whole
time while the key is worked with in the main cache (e.g. via an entry processor) and while the data
is written through to PyPies.

The main cache locking is done using the GridCacheMapEntry.(un)lockEntry methods, while the
write behind cache works with StatefulValue objects, which extend a lock implementation
themselves.

Overview of plugins
com.raytheon.uf.common.datastore.ignite - Contains the main implementation of IDataStore
that maps operations to ignite caches including all the entry processors and write behind
logic.
com.raytheon.uf.common.datastore.pypies.servlet - a standalone Servlet that can emulate
pypies.
com.raytheon.uf.common.datastore.ignite.pypies - ties the servlet into an ignite service.
com.raytheon.uf.edex.pointdata.ignite - To automatically associate point data plugins with the
point data cache.
com.raytheon.uf.ignore.core - contains server-speci�c �les for ignite (note that this is currently
installed via an EDEX RPM though, as the ignite component.spec hasn't been setup to install

jars)

Ignite logs
You can view logs in /awips2/ignite/logs or use journalctl like this:

One particularly useful log message that can be monitored is the metrics logging which is
produced every minute and gives a good overall view of the state of ignite, here is an example:

Within EDEX all the ignite related logging is sent to a dedicated log �le at /awips2/edex/logs/edex-
<mode>-ignite-<date>.log.

The server-side logging is con�gured in ignite-logback.xml, while the EDEX/client-side logging is in
the main logback-edex-*.xml �les.

Disabling ignite
EDEX can be con�gured to ignore ignite and instead interact with PyPies directly. This is intended
to save resources for developers who are running things locally and don't need ignite. This is done
by setting the following variable in a local environment �le, such as ~/.bashrc

/awips2/edex/bin/setup.env will then pick up that value and use it, instead of defaulting that
variable to "ignite".

journalctl -u ignite@developer
journalctl -f -u ignite@developer

INFO 2020-01-23 17:16:28,698 4675 [grid-timeout-worker-#71] IgniteKer
 Metrics for local node (to
 ^-- Node [id=ec30a4c4, uptime=00:03:00.044]
 ^-- H/N/C [hosts=1, nodes=1, CPUs=32]
 ^-- CPU [cur=0.03%, avg=0.07%, GC=0%]
 ^-- PageMemory [pages=203]
 ^-- Heap [used=137MB, free=86.62%, comm=512MB]
 ^-- Off-heap [used=3MB, free=99.86%, comm=1104MB]
 ^-- sysMemPlc region [used=3MB, free=96.82%, comm=40MB]
 ^-- default region [used=0MB, free=100%, comm=1024MB]
 ^-- TxLog region [used=0MB, free=100%, comm=40MB]
 ^-- Outbound messages queue [size=0]
 ^-- Public thread pool [active=0, idle=0, qSize=0]
 ^-- System thread pool [active=0, idle=6, qSize=0]

export DATASTORE_PROVIDER=pypies

The Python Virtual Environment
AWIPS II historically has had its own Python installation completely separate from the system
Python. As of AWIPS II release 21.4.1, it will use the Red Hat-provided system Python 3 installation
along with a virtual environment.

Virtual environments (short: virtualenv or venv) are a standard feature provided by Python 3. A
virtual environment is a directory whose structure is very similar to that of a standard Python
installation, but instead of real binaries, it contains symbolic links to the appropriate Python
binaries elsewhere in the system. It also makes use of the system's Python standard library, but
maintains its own site-packages directory.

The virtual environment provides these bene�ts:

�. It is not necessary to build and install a complete Python installation anymore. We just
symlink to the Red Hat-provided Python.

�. The separate site-packages directory allows us to maintain complete control over which
Python packages are available to AWIPS (as was the case before the virtual environment).

�. The virtual environment is independent of Python patch-version upgrades. For example, the
system Python can be upgraded from 3.6.8 to 3.6.9 without any changes whatsoever to the
virtual environment and without a new release of the awips2-python RPM package.

�. A virtual environment can optionally make use of Python packages that are installed at the
system level. The Python virtual environment used by AWIPS currently does not do this; it has
no access to the system site-packages directory. But the availability of this feature allows for
the future possibility of replacing Python FOSS packages that we package and distribute
ourselves, with Red Hat-provided equivalents that would be installed to the system Python.

How AWIPS uses the Python virtual environment
The awips2-python RPM package contains an empty virtual environment, with no packages
installed in it other than pip and setuptools (which, as essential packaging tools, are required by
Red Hat's Python 3 and are included by default in all virtual environments). This virtual
environment is installed to /awips2/python.

For invocations of the Python interpreter to make use of the virtual environment, the venv must
�rst be activated. This is done by sourcing the �le /awips2/python/bin/activate (or activate.csh if the
csh shell is being used). This sets environment variables and updates the $PATH to make sure
invocations of 'python3' (without a path) resolve to /awips2/python/bin/python3.

The activate script is sourced on login by all users except root, via the �le
/etc/pro�le.d/awips2Python.sh (or awips2Python.csh). Because of this, AWIPS software continues to
function as it did when /awips2/python contained a full Python installation.

One can at any time con�rm that the virtual environment is active by checking the VIRTUAL_ENV
environment variable:

Making your Python code work with the virtual environment
There are no special considerations required to make AWIPS Python code work inside the virtual
environment. Just ensure that, as before, any Python scripts intended to be run directly have their
�rst line as “#!/awips2/python/bin/python3”.

$ echo $VIRTUAL_ENV
/awips2/python

How Python FOSS packages are installed to the virtual
environment
Currently, almost all Python FOSS packages provided by AWIPS are built from source, using the
setup.py script included in the upstream source distribution of each package. These are the usual
contents of the %install section of the RPM spec �le (this example is taken from the awips2-python-
cftime package):

Note the bit of boilerplate code at the end which merges the lib64 directory into lib. This is
necessary because some Python packages create a lib64 directory containing native binaries. In
the virtual environment, lib64 is a symlink to . /lib, and we want lib to be the canonical location for
everything that is installed. That said, the last �ve lines in the above snippet are required at the
end of the %install section in all AWIPS Python packages.

Python wheels
Now that pip, the Python package manager, is available in the Red Hat Python distribution as well
as in all virtual environments, installation from a wheel (prebuilt Python package with .whl
extension) is the preferred method for all AWIPS Python RPM builds going forward.

Here is an example of the %install section in an AWIPS Python FOSS RPM spec �le:

Again, the merge of lib64 into lib is included to ensure that lib, not lib64, is the location of �les
owned by AWIPS Python FOSS RPMs.

pushd . > /dev/null
cd %{_python_build_loc}/cftime-%{version}
/awips2/python/bin/python setup.py install \
 --root=%{_build_root} \
 --prefix=/awips2/python | exit 1
popd > /dev/null

Merge lib64 into lib to avoid problems with installing into the virtualenv
if [-d "%{_build_root}/awips2/python/lib64/"]; then
 rsync -a %{_build_root}/awips2/python/lib64/ %{_build_root}/awips2/python/lib || exit 1
 rm -rf %{_build_root}/awips2/python/lib64
fi

v="%{_installed_python_short_no_dot}"
pkg_file="tables-%{version}-cp${v}-cp${v}m-manylinux1_%{_build_arch}.whl"
pkg_path="%{_baseline_workspace}/foss/tables-%{version}/packaged/${pkg_file}"

/awips2/python/bin/pip3 install \
 --ignore-installed \
 --no-deps \
 --no-index \
 --root=%{_build_root} \
 --prefix=/awips2/python \
 "${pkg_path}" \
 || exit 1

Merge lib64 into lib to avoid problems with installing into the virtualenv
if [-d "%{_build_root}/awips2/python/lib64/"]; then
 rsync -a %{_build_root}/awips2/python/lib64/ %{_build_root}/awips2/python/lib || exit 1
 rm -rf %{_build_root}/awips2/python/lib64
fi

Adding and Upgrading Java FOSS
If you have to add a new Java FOSS package to CAVE or EDEX, or upgrade an existing package, the
process is as follows:

�. Download the package(s) and all dependencies from Maven central
�. Sort downloaded JARs into: new / upgrade / no change
�. Install JARs into Eclipse project directories (create new projects if necessary)
�. Update MANIFEST.MF �les and project classpaths
�. Create / update feature.xml �les.
�. Fix any errors in Eclipse.
�. Test your changes.

A description of these steps follows.

Note that the steps generally apply regardless of what AWIPS components use the FOSS
package(s), though there are some extra steps that apply only to FOSS used by EDEX; these extra
steps are labeled as such.

These steps only apply speci�cally to COTS/FOSS packages. For general information on creating
new plugins in AWIPS, see Use of ADE.

Download packages from Maven central
You will have to run Maven to download the full dependency tree for all packages that you know
you need. A Bash script is provided that will do this for you. You must have Maven installed to run
the script . If you don't have Maven installed you may install it either from your Linux distribution's
package repository, or the AWIPS build of Maven, which is provided by the awips2-maven RPM
package.

This is the Bash script that downloads JARs using Maven, copy and paste this into a �le named
"mvntool.sh" (or whatever you want).

#!/usr/bin/env bash

Script to download JARs using Maven. Downloads binary and source JARs and
all transitive dependencies, and also provides a dependency tree in a text
file, showing the dependency relationships between all JARs downloaded.
#
No configuration is required, the script uses its own separate Maven
configuration and ignores the one in $HOME/.m2. If you are behind a proxy
you will have to add the proxy config to the "settings" variable in
this script.
#
The script takes its input from stdin. One JAR per line, the format is
groupID artifactID version
#
For example:
#
$./mvntool.sh <<< "org.geotools gt-coverage 21.1"
#
Will download gt-coverage-21.1.jar, gt-coverage-21.1-sources.jar and all
dependencies.
#
Another example:
$./mvntool.sh << EOF
org.geotools gt-coverage 21.1
org.geotools gt-affine 21.1
org.geotools gt-referencing 21.1
EOF
#
Downloads all three of the named JARs.
#
The JARS are downloaded to a newly created directory in /tmp, the name
of the directory is included at the end of the script output. In that
directory you will also find dependency-tree.txt that includes the
dependency tree, with the JARs specfied in the input at the top level.
#
If you need additional repositories you should make a copy of this script
and add them yourself to the "settings" variable.
#
Author: tgurney

PATH=/awips2/maven/bin:$PATH

settings="<settings xmlns=\"http://maven.apache.org/SETTINGS/1.0.0\"
 xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
 xsi:schemaLocation=\"http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd\">
 <activeProfiles>
 <activeProfile>securecentral</activeProfile>
 </activeProfiles>
 <profiles>
 <profile>
 <id>securecentral</id>
 <repositories>
 <repository>
 <id>central</id>
 <url>https://repo1.maven.org/maven2</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 <!--
 <repository>

 <id>osgeo</id>
 <url>http://download.osgeo.org/webdav/geotools/</url>
 </repository>
 -->
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>central</id>
 <url>https://repo1.maven.org/maven2</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 </profiles>
 <proxies>
 <!-- Uncomment and update this if you are a behind a proxy -->
 <!--<proxy>
 <active>true</active>
 <protocol>http</protocol>
 <host>localhost</host>
 <port>80</port>
 </proxy>-->
 </proxies>
</settings>
"

settingsFile=$(mktemp)
echo "${settings}" > "${settingsFile}"

theXml="${theXml}
 <project xmlns=\"http://maven.apache.org/POM/4.0.0\"
 xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
 xsi:schemaLocation=\"http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-
4.0.0.xsd\">

 <modelVersion>4.0.0</modelVersion>

 <groupId>test</groupId>
 <artifactId>test</artifactId>
 <version>1.0</version>
 <packaging>jar</packaging>

 <name>Test</name>
 <url>http://www.example.com</url>

 <dependencies>
"

while read line; do
 if [["${line}" == ""]]; then
 continue
 fi
 group=$(echo $line | cut -d ' ' -f1)
 artifact=$(echo $line | cut -d ' ' -f2)
 version=$(echo $line | cut -d ' ' -f3)
 theXml="${theXml}
 <dependency>
 <groupId>${group}</groupId>
 <artifactId>${artifact}</artifactId>
 <version>${version}</version>

Provide the script with a list of Maven artifacts, and it will download those artifacts and all
dependencies. Read the comments at the top of the script for further details on how to use it.

The Bash script will also produce a graphical dependency tree in a text �le. Keep this �le. You will
need to refer to this throughout the process.

You will also want to create a separate list of all JARs that were downloaded and treat it as a
checklist to make sure you account for every single one.

If you run into issues with the script
The simplest thing to do is to run the steps manually. You will have to be set up to run Maven, that,
is, you must have the �le .m2/settings.xml in your home directory and it must be correct. If you
need a settings.xml �le, you can use the one in the "settings" variable in the above script as a basis.

Then create a new empty directory, and in that directory create a "pom.xml" �le with these
contents:

 </dependency>
 "
 if [[-z ${group} || -z ${artifact} || -z ${version}]]; then
 continue
 fi
done

theXml="${theXml}
 </dependencies>
</project>
"

pomdir=$(mktemp -d)
echo "${theXml}" > "${pomdir}"/pom.xml
pushd "${pomdir}"
mvnargs="-s \"${settingsFile}\""
mvn ${mvnargs} dependency:copy-dependencies
mvn ${mvnargs} dependency:sources
mvn ${mvnargs} dependency:tree > dependency-tree.txt
mv dependency-tree.txt ./target/dependency
pushd ./target/dependency
for item in $(ls -1 *.jar | sed 's/.jar/-sources.jar/g'); do
 find ~/.m2/repository -regex ".*\/${item}" -type f -exec cp '{}' . \;
done
popd # pomdir
mv target/dependency/* .
rm -rf target
popd
rm -rf "${settingsFile}"
echo JARs located at "${pomdir}"

In the "dependencies" list, add one "dependency" XML element for each JAR you need, and �ll in
the group ID (example: org.apache.camel), artifact ID (example: camel-core) and version number.
Then in the directory containing pom.xml, run these commands to download all the JARs and
create a dependency tree listing:

The only issue with this is that Maven does not put the source code JARs in the current directory for
you--only the binary JARs. It does download the source JARs, but leaves them in
$HOME/.m2/repository, so you will have to hunt for them in that directory.

Important notes on downloading JARs
If you don't know the group ID and artifact ID for each of the packages you want, for new
packages you can use the search function on mvnrepository.com, and for packages already in
AWIPS, you can infer these: the group ID is usually the name of the Eclipse project that
contains the FOSS (example: "org.apache.camel") and the artifact ID is in the �lename of the
JAR �le (example: "camel-core" from the JAR �le "camel-core-2.25.2.jar".
You must always download and look over the full dependency tree. Even when just
upgrading a single existing FOSS package, it is not enough to only download the newest
versions of JARs that are already present. New dependencies can be introduced with new
releases of software, and the only practical way to make sure you get them all is to use Maven
to download them.
The website mvnrepository.com is useful for informational purposes: speci�cally for looking
up names of JARs, group IDs, artifact IDs, and version numbers. But for downloading JARs,
you should run Maven, and it will fetch them from the Maven central repository.

Sort downloaded JARs into "new" / "upgrade" /
"no change"

 <project xmlns=\"http://maven.apache.org/POM/4.0.0\"
 xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
 xsi:schemaLocation=\"http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-
4.0.0.xsd\">

 <modelVersion>4.0.0</modelVersion>

 <groupId>test</groupId>
 <artifactId>test</artifactId>
 <version>1.0</version>
 <packaging>jar</packaging>

 <name>Test</name>
 <url>http://www.example.com</url>

 <dependencies>
 <!-- Add one <dependency> element for each JAR you need, and fill in the three fields.
-->
 <dependency>
 <groupId></groupId>
 <artifactId></artifactId>
 <version></version>
 </dependency>
 </dependencies>
</project>

#!/bin/bash
mvn dependency:copy-dependencies
mvn dependency:sources
mvn dependency:tree > dependency-tree.txt

The JARs you have downloaded should be treated in three separate categories:

�. No change: JARs that already exist in an AWIPS git repository and that meet the version
requirements.

�. Upgrades: JARs that exist in AWIPS but do not meet the version requirements, so they need
to be upgraded to the version you just downloaded via Maven.

�. New: JARs that do not exist in AWIPS at all.

You can start categorizing JARs by doing, for each JAR you have downloaded, a search of all AWIPS
git repositories using a regex that matches any version of that JAR. (example: "camel-core.*\ .jar").
You should check all repositories, though it is especially important to check AWIPS2_foss and
ufcore-foss since these are where we keep the vast majority of FOSS JARs.

If you �nd a JAR that matches and whose version number is at least as great as the JAR you have
downloaded, it falls into the "no change" category and you can simply delete the downloaded JAR
and mark it as "no change" in your checklist.

You may �nd an older JAR that matches the regex, in which case you will have to note that JAR as
one to be upgraded.

Finally, you might not �nd any JAR that matches the regex, in which case you'll note that as a new
JAR.

Install JARs into Eclipse project directories
For JARs to be upgraded, you may delete the old JAR and put the new JAR in the same directory.

For new FOSS JARs, the standard is that they go into an Eclipse project that has the same name as
the Maven group ID. For example, all JARs in the "org.apache.camel" group should be installed into
the "org.apache.camel" Eclipse project. If there is no Eclipse project yet for a given group ID, then
you will have to create one, and the best way to do this is to make a copy of an existing Eclipse
project that contains FOSS JARs. Put the new project in the ufcore-foss git repo. (The split between
ufcore-foss and AWIPS2_foss exists only for historical reasons; these two are likely to be merged into
a single repo in the future.)

Make sure you install both the binary and source JARs.

Update MANIFEST.MF �les and project
properties
Each Eclipse project you have created or changed will have a MANIFEST.MF that you will have to
update. You also have to update the project properties to include the JARs on the classpath and
link all of the source JARs to their corresponding binary JARs. The steps are the same regardless of
whether you are adding new JARs or upgrading existing ones. For each Eclipse project, do the
following:

�. Refresh the Eclipse workspace to make sure the latest �le list is visible.
�. Right-click on the project in the Package Explorer, and go to Properties->Java Build Path.
�. In the Libraries tab, remove all JARs that you have deleted. Then click "Add JARs" and select

all of the non-sources JARs that you added to that project.
�. For each JAR in the list, click the triangle to the left of the JAR, double-click on Source

Attachment, click Browse and then select the sources JAR that corresponds to that JAR.
�. Still in the Properties window, switch to the Order and Export tab and check the box next to

each JAR to mark it as exported. Now click OK to close the Properties window.
�. In the Package Explorer, open META-INF/MANIFEST.MF.
�. If the project is a new project, �ll in the ID �eld with the Maven group ID (example:

org.apache.camel).
�. Fill in or update the version �eld to match the FOSS project version.
�. Update the Name �eld if necessary. Just put something descriptive in this �eld; it is for

human use only.

��. In the Execution environments list, con�rm that the listed JRE version matches the JRE
version used by the AWIPS branch you are working in. If it doesn't, click Remove, then Add,
and select the correct version. (It will most likely be either JavaSE-1.8 or JavaSE-11.)

��. Switch to the Dependencies tab in MANIFEST.MF. Look at the Required Plug-Ins list, and
con�rm that the list of required plug-ins matches the list of dependencies as produced by
Maven. If it doesn't, use the Add and Remove buttons to add and remove plug-ins as needed
so that all dependencies are satis�ed. Refer to the dependency-tree.txt �le to make sure that
you get all the dependencies for every JAR in this Eclipse project. Also note that we are using
the Required Plug-ins list rather than the Imported Packages list; this is the preferred way to
do it in AWIPS.

��. Switch to the Runtime tab. Remove all items from the Exported Packages list. Then click add,
and add all of the packages listed.

��. Still in the Runtime tab of MANIFEST.MF, remove all JARs from the Classpath list. Then click
the Add button and select every non-sources JAR in this Eclipse project. Make sure the
"Update the build path" box is checked before clicking OK.

��. Switch to the Build tab of MANIFEST.MF and review the Binary Build list at bottom-left. All
non-sources JARs, plus the META-INF folder, should have a check mark. If not, you likely
missed an earlier step.

��. Uncheck all boxes in the Source Build list.
��. Review the last two tabs (the MANIFEST.MF and build.properties tabs) and make sure the

contents are correct.
��. Save the MANIFEST.MF �le.

Create/update feature.xml �les
If the FOSS package is already being used in AWIPS code, it will be listed in a feature.xml �le
somewhere. Do a textual search through all "feature.xml" �les for the name of each Eclipse project
that you modi�ed. Usually if you �nd any such references, they will specify the version number
"0.0.0"; leave these alone. If there is an actual version number there, though, update it to match the
new version number of the FOSS package.

Special steps for new EDEX FOSS
FOSS packages used by EDEX are built and packaged individually. So for each new FOSS project
that is or will be used by EDEX, you have to create a new Eclipse feature for the project. These
features are kept in the ufcore repo, in the "features" directory. Follow these steps to create a new
feature and integrate it into the EDEX build:

�. Create a new directory named "com.raytheon.uf.edex.foss." followed by the name of the
Eclipse project, followed by ".feature". For example, for the "org.apache.camel" project, the
name of the feature directory is "com.raytheon.uf.edex.foss.org.apache.camel.feature".

�. Copy the contents of the directory from one of the other EDEX FOSS feature directories. You
need the following �les: "build.properties", "feature.xml", ".project".

�. Open the ".project" �le in the new directory, and change the project name to the name of the
directory. Then save and close the �le.

�. Open the "feature.xml" �le, change the feature id attribute to the name of the directory,
update the label attribute, update both version numbers to match the version number of the
FOSS project, and update the plugin ID attribute to match the name of the Eclipse project.
Then save and close the �le.

�. Import the new feature into Eclipse via the Package Explorer: Right-click in the Package
Explorer, click "Import", under General select "Existing Projects into Workspace" and click
Next, then click Browse and select the ufcore/features directory. Then click Finish to import
the project.

�. Add the feature to build.xml: Open AWIPS2_baseline/edexOsgi/build.edex/build.xml, you will
�nd a list of "antcall" elements that refer to EDEX FOSS features, add your new feature to this
list. The order is signi�cant--a feature must not be built until all of its dependencies are built.
So you have to put the feature in the list after the "com.raytheon.uf.edex.foss.feature" but
before all FOSS packages that depend on that package, and after all packages that that
package depends on.

�. Update comps.xml: Each EDEX FOSS feature results in an RPM package being built for that
feature, and that RPM package has to be added to all of the EDEX package groups. Open
AWIPS2_build/installers/Linux/comps.xml. In this �le you will �nd lists of EDEX FOSS
packages. Add the new package to every list that contains awips2-edex-foss.

Fix any errors in Eclipse
You may see some errors in your Eclipse workspace, whether from following the above steps
incorrectly or because upgrading some packages resulted in code breakage. Fix all errors in the
Eclipse workspace.

Test your changes
You should be able to build and deploy EDEX from within Eclipse, run EDEX on your workstation,
and run CAVE and connect it to your local EDEX. Run through this process before committing any
changes.

RHHI
With the virtualization of the AWIPS servers using Red Hat Hyperconverged Infrastructure (RHHI)
came changes regarding the architecture of the server hardware and how sites setup. The �gures
below demonstrate these differences and list which services and components are expected to be
run out of each virtualized server.

Figure 6.1 - WFO Server/VM Architecture

Figure 6.2 - RFC Server/VM Architecture

Figure 6.3 - RHQ & NC Server/VM Architecture

DV1 Postgres, RCM

DV2 PyPIES

DV3/4/5/n... ingest, ingestDat, ingestGrib, request

PV1 BMH, Comms Manager

PV2 BMH, Comms Manager

CPV1 Qpid, LDM

CPV2 registry

CACHE1/2/3/n... Ignite

 Table 6.1 - Server and Services

CAVE Performance Logging

UI Thread Monitor
The UIThreadMonitor class monitors stalls on the CAVE UI Thread that make the application appear
to "freeze" or "hang". When the UI Thread is stalled for longer than a speci�ed threshold, a message
is logged in the cave_yyyymmdd_hhmmss_pid_nnnnn_logs.log �le indicating "UI Thread stalled for
more than 500 ms:" followed by a stack trace of the UI thread to show where the thread may be
stalled. If you see this message in your logs you should examine where the UI Thread is stalled and
if it is in code you are developing, consider moving any long running processes onto a separate
thread.

The default 500 ms threshold for declaring the UI thread stalled can be changed by setting the
ui.thread.monitor.threshold.millis system property. This property is speci�ed in the awips.product
and developer.product �les and can be overridden in the �eld by editing the value in the applicable
*.ini �le under /awips2/cave.

Request Logging
All requests leaving the CAVE application should be logged immediately prior to the request being
sent and upon a response being returned. The response log should include the time in ms
between the request being sent and the response being received. All responses should be logged
whether the request was successfully handled, or an error condition or timeout was encountered.
Each request/response log message should contain some kind of id which is unique to that request
within the CAVE session to allow the request/response log messages to be properly paired.

Thrift request performance logging
CAVE Thrift requests and responses are logged to the
cave_yyyymmdd_hhmmss_pid_nnnnn_requests.log �le under
${user.home}/caveData/logs/consoleLogs/${HOSTNAME}/. These requests are automatically logged
when ThriftClient.sendRequest() is called.

When creating a new request class that implements IServerRequest or modifying an existing one
you should provide a toString() method that provides the info about the request that you want to
appear in this log �le.

The toString() method should include, at a minimum, the class name and any parameters that
maybe useful in debugging performance issues. Large data arrays should not be logged in their
entirety but should include their size. Parameters should be logged with their name followed by
their contents enclosed in square brackets. Although they are not IServerRequests, the
com.raytheon.uf.common.pypies.request.AbstractRequest class hierarchy contain good examples
of toString() methods for requests.

Example Thrift request log messages:

PyPies request performance logging
CAVE PyPies requests are logged to the cave_yyyymmdd_hhmmss_pid_nnnnn_pypies.log �le
under ${user.home}/caveData/logs/consoleLogs/${HOSTNAME}/. These requests are automatically
logged whenever PyPiesDataStore functions are called. When creating a new request that extends
com.raytheon.uf.common.pypies.request.AbstractRequest or a response that extends
com.raytheon.uf.common.pypies.response.AbstractResponse you should provide a toString()
method that provides the info about the request/response that you want to appear in this log �le.

INFO 2021-04-12 15:13:52,138 9210 [main] CaveRequestLogger: Sending request to URL http://ec-om
INFO 2021-04-12 15:13:52,214 9211 [main] CaveRequestLogger: Request id[825f8fe4-05bf-4b11-8e5b-

Example PyPies request log messages:

General purpose performance logging
When creating or maintaining code that can consume signi�cant processing time you should
consider adding performance logging. Performance logging should be done using a
PerformanceStatus handler vs using System.out.println() or the normal UFStatus or slf4j Logger
used for error/debug logging . All PerformanceStatus log messages are logged to the
cave_yyyymmdd_hhmmss_pid_nnnnn_perf.log

Example of general purpose performance logging using PerformanceStatus:

Example general purpose performance logging messages:

INFO 2021-04-12 15:14:26,274 9221 [Worker-4: Requesting Grid Data] PyPiesRequestLogger: Sending
INFO 2021-04-12 15:14:27,699 9338 [Worker-4: Requesting Grid Data] PyPiesRequestLogger: Request

 // get a performance status handler for your function
 private static final IPerformanceStatusHandler perfLog = PerformanceStatus
 .getHandler("MapScalesManager:");

 .
 .
 .

 // get current time in millis immediately prior to the action
 long t0 = System.currentTimeMillis();
 try {
 getScaleBundle();
 } finally {
 // following completion/failure of the action log the duration
 perfLog.logDuration("Loading scale " + this.displayName,
 (System.currentTimeMillis() - t0));
 }

INFO 2021-04-12 15:14:01,041 9216 [main] PerformanceLogger: MapScalesManager: Loading scale N. H
INFO 2021-04-12 15:14:01,053 9217 [main] PerformanceLogger: MapScalesManager: Loading scale Nort
INFO 2021-04-12 15:14:01,066 9218 [main] PerformanceLogger: MapScalesManager: Loading scale CONU
INFO 2021-04-12 15:14:01,076 9219 [main] PerformanceLogger: MapScalesManager: Loading scale Regi
INFO 2021-04-12 15:14:01,085 9220 [main] PerformanceLogger: MapScalesManager: Loading scale Stat
INFO 2021-04-12 15:14:01,100 9221 [main] PerformanceLogger: MapScalesManager: Loading scale WFO

Special Case Ingest Using Manual Dropped-in
Files
One of the most useful special cases is that of manual ingest. Manual ingest is useful for testing
and small deployments that do not have an LDM. The nice thing about manual ingest is that the
standard ingest pipelines are reused and the only change is how noti�cations originate, as shown
in Figure 5-3.

Figure 5-3. Manual Ingest Data Flow Using Distribution Server
Data �ow originates with �les dropped into the "{edex.home}/data/manual" endpoint on an
EDEX box. It does not matter how the �les get there.
A special EDEX plugin is listening to this �le endpoint using a standard apache Camel �le
sniffer component.
The "manualingest" plugin moves the dropped-in �le to the raw archive. Files disappearing
from the �le endpoint indicate that EDEX is running and �les are getting sniffed up.
A noti�cation to the external dropbox queue is sent to start the ingest pipeline from the
"manualingest" plugin.
From this point on ingest is identical to the standard ingest used by the LDM as described
earlier.

Standard AWIPS Data and Noti�cation Flow
AWIPS II establishes a standard pattern for ingesting raw data and making that data available to all
components of the system. EDEX decodes incoming data and converts it on ingest into a set of
metadata records for querying and data records for decoded data. Figure 5-1 displays a top-level
view of how the data �ows from the Satellite Broadcast Network (SBN) system all the way to the
CAVE display component. This data �ow is generic and applies to all data types that come over the
SBN. Local radar, Local Data Acquisition and Dissemination (LDAD) data, and manual data �ow are
special cases. These special cases vary in how data arrives at EDEX but they follow the standard
pattern once the data gets to EDEX. The following describes the standard data �ow.

Figure 5-1. Standard AWIPS Data and Noti�cation Flow
Figure 5-1 shows the major steps and components involved in the data �ow that originates from
the SBN.

LDM (Local Data Manager) with the SBN module interfaces directly with the SBN satellite
receiver over a multicast UDP (User Datagram Protocol) interface from a DVB-S. The LDM
control �le (pqact.conf) determines the location and �lename of where the raw data gets
written to, often to a VM (virtual machine) mounted directory such as /data_store. These �les
are raw data �les that have not been decoded.

The EDEX Bridge process interfaces directly with LDM to watch for new data arrivals. If
speci�ed in the LDM control �le, once each data �le has completed writing to disk then EDEX
Bridge will send a noti�cation message over JMS to the External Dropbox queue to be
consumed by EDEX.

The Distribution Service in EDEX listens continuously to the External Dropbox queue. The job
of the Distribution Service is to route the data arrival noti�cation to the appropriate plugin
queue to and start the decode and ingest pipeline. The Distribution Service's routing is
controlled by the plugin's distribution XML �le, which is stored in the localization �le system.
Contained within the distribution XML are WMO header and �le name regular expressions
�lters that specify the �les that the plugin is designed to decode and store.

The data plugin inside EDEX receives the noti�cation sent by the Distribution Service. The
plugin uses its decoder and other data speci�c support capabilities to extract metadata and
records from the raw �le. The raw �le is accessed directly from the raw �le store. As part of
this process, each piece of decoded data receives a unique URI known as a dataURI.

The decoded data is sent to the Persist Service which sends the data to be cached by Ignite.
While holding the data for quick retrieval, Ignite will simultaneously send the new data to
PyPIES which stores the data to HDF5 �les based on the unique URI.

The metadata of the decoded data is sent to the Index Service and is stored as PostgreSQL
records with speci�c �elds identi�ed to form the URI reference.

EDEX generates a log message and sends out a noti�cation with URI of the newly decoded
and stored data. Each CAVE (and potentially other EDEX instances or applications) listens for
these noti�cations to know immediately when new data has been processed.

AWIPS II Architecture
AWIPS II is a client/server plugin-based architecture. It consists primarily of a server application
named EDEX (Enterprise Data EXchange) and a desktop application named CAVE (Common
AWIPS Visualization Environment). The AWIPS II design is based on a Service Oriented Architecture
(SOA) where the applications utilize services and have no knowledge of the underlying
implementations of those services. The applications communicate with one another with HTTP
(Hypertext Transfer Protocol) and JMS (Java Messaging Service) and only communicate with
established services.

Other applications provide some of the services and components of the server architecture as
separate processes. However, these other applications can mostly be considered as FOSS (Free and
Open Source Software) that just run out of the box without AWIPS II modi�cations or
development. These other server components are:

LDM: Provides data feed from the SBN (Satellite Broadcast Network)
Qpid: Serves as the JMS message broker
Postgres: Stores decoded metadata and data
Ignite: Caches decoded data for fast retrieval
PyPIES: Stores decoded data

EDEX Architecture
The EDEX server application is a SEDA (Staged Event Driven Architecture) application that is built
upon Apache Camel (http://camel.apache.org/) and Spring (http://projects.spring.io/spring-
framework/). This type of architecture is event driven, where code is executed when events occur.
Events include JMS messages, HTTP requests, �le arrival messages, cron-based events that occur
periodically on a timer, and more.

EDEX instances can be clustered to improve performance and they will automatically distribute the
workload of tasks. Each EDEX instance is started in a speci�c mode. A mode indicates a set of
responsibilities and event routes that this EDEX instance will be supporting. The most commonly
used modes are:

request: Responsible for providing access to the data through service requests
ingest: Responsible for decoding and storing data. Also supports some post-processing and
cleanup tasks.
ingestGrib: Responsible for decoding and storing grib data (both grib1 and grib2 format)
ingestDat: Responsible for generating post-processed data to support the DAT (Decision
Assist Tools) suite

CAVE Architecture
CAVE is an OSGi (https://www.osgi.org/) (Open Services Gateway initiative) plugin-based application
built on top of the Eclipse RCP (https://eclipse.org/) (Rich Client Platform). Using Eclipse RCP, CAVE
detects what plugins are installed and provides the perspectives, menu items, preferences, dialogs,
etc that are contributed by each installed plugin. Many of CAVE's capabilities are associated with
Eclipse 'Perspectives.' A perspective consists of a unique UI (user interface) and functionality.
Examples of perspectives are D2D (Display Two Dimensional), GFE (Graphical Forecast Editor),
Hydro, MPE (Multipoint Precipitation Editor), NCP (National Centers Perspective), and Localization.
Eclipse RCP also provides many capabilities automatically, such as the ability to drag and drop tabs
to reorganize a window layout.

CAVE uses SWT (https://www.eclipse.org/swt/) (Standard Widget Toolkit) to provide native operating
system widgets so that user interfaces retain the look and feel of each operating system. For
displays of maps, weather data, etc, CAVE uses OpenGL (http://www.opengl.org/) (Open Graphics
Language) to take advantage of the rendering capabilities of the graphics card.

http://camel.apache.org/
http://projects.spring.io/spring-framework/
https://www.osgi.org/
https://eclipse.org/
https://www.eclipse.org/swt/
http://www.opengl.org/

Layers and Interfaces
The AWIPS II architecture follows SOA principles through the use of layers and interfaces. Each
component has knowledge of the interfaces it needs but not of the implementation details behind
those interfaces. This makes the code more adaptable and maintainable should the underlying
implementations need to change in the future. Code should not be dependent on speci�c
implementations to work.

Examples:

JMS communication: Use the established JMS interfaces
(https://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html). Components do not
need to know that the underlying JMS implementation is Qpid (Queue Processor Interface
Daemon) which uses the AMQP (Advanced Messaging Queuing Protocol) protocol to send
and receive messages.
IDataStore storage: Use the DataStoreFactory and IDataStore methods. Components do not
need to know that the underlying caching scheme is Ignite, nor that the data store
implementation is PyPIES (Python Process Isolated Enhanced Storage) and that it stores data
to the HDF5 (https://www.hdfgroup.org/HDF5/) (Hierarchical Data Format) �le format.
Graphics rendering: Use the IGraphicsTarget interface. Components do not need to know
that the primary rendering implementation uses OpenGL.

https://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
https://www.hdfgroup.org/HDF5/

JMS and QPID
For information on JMS and messaging topology, see the following:

JMS Overview: https://docs.oracle.com/javaee/7/tutorial/jms-concepts.htm
(https://docs.oracle.com/javaee/7/tutorial/jms-concepts.htm)
JMS APIs - javax.jms: https://docs.oracle.com/javaee/7/api/index.html?javax/jms/package-
summary.html (http://docs.oracle.com/javaee/5/api/)
Camel JMS con�guration: http://camel.apache.org/jms.html
(http://camel.apache.org/jms.html)
Spring JMS Overview: https://docs.spring.io/spring-framework/docs/5.1.x/spring-framework-
reference/integration.html#jms (https://docs.spring.io/spring-framework/docs/5.1.x/spring-
framework-reference/integration.html#jms)
EDEX: A single Qpid connection per JVM, with one session per thread. Usually each session
has one consumer. If a thread/route sends to multiple other queues (i.e., distribution) it will
have a producer for each destination it sends to. Pooling is setup for each of the JMS API
objects. Camel/Spring will create and close the resources for every message, so pooling was
setup to reuse JMS resources. These can be found at com.raytheon.uf.common.jms.
CAVE:

Receive: All pulls should go through
com.raytheon.uf.viz.core.noti�cation.jobs.Noti�cationManagerJob.
Noti�cationManagerJob will only have one connection, with many sessions. Each
queue/topic is listened to async via MessageListener interface. Each message is
delivered async via Eclipse Job.
Send: No standard framework. Look up
com.raytheon.uf.viz.core.comm.JMSConnection and use JMS calls directly. See
com.raytheon.viz.warngen.comm.WarningSender.java

https://docs.oracle.com/javaee/7/tutorial/jms-concepts.htm
http://docs.oracle.com/javaee/5/api/
http://camel.apache.org/jms.html
https://docs.spring.io/spring-framework/docs/5.1.x/spring-framework-reference/integration.html#jms

GeoTools and JTS Use - Best Practices

A 2D Coordinate Point or Position
The basic building block of all the geospatial logic in AWIPS II is the concept of a 2-dimensional
position which is represented by a numerical x and y. Many simple geographic positions are
expressed using latitude and longitude (often shortened to Lat/Lon) where longitude is
represented by the x value and latitude is represented by a y value. Positions on the screen and
inside the application's canvas are also represented by a numerical x and y. Many different classes
can be used to represent the same idea of a position, and unfortunately due to all the different
libraries it is impossible to use a single representation. Below is a list of many of the classes used in
AWIPS II to represent x,y points.

org.locationtech.jts.geom.Coordinate: This is a good default representation for geospatial
usage. It is the building block of all higher level JTS types so it is common in code that is
taking advantage of JTS data structures. It is also the most common representation for
Lat/Lon values.
org.locationtech.jts.geom.Point: This is just a wrapper around a Coordinate object to use it
as a JTS Geometry. JTS Geometries provide many useful algorithms and this class must be
used for interacting with many of those algorithms. Outside of code using JTS to interact with
Geometries this class should be avoided since Coordinates are simpler.
org.opengis.geometry.DirectPosition,org.geotools.geometry.DirectPosition2D: This is
used extensively when math transforms are being used to reproject data between different
coordinate systems. This is very commonly used for coordinates in a projected coordinate
system or points in a grid (more on that later), it is not as common for Lat/Lon points or
display points.
java.awt.Point: This class is limited because it uses an int for x,y values. It is very rarely used in
AWIPS II. It must be used sometimes to interact with AWT speci�c code and occasionally it is
used to represent a grid point that has been rounded to an int value.
java.awt.geom.Point2D: This class is not common in AWIPS II, it is the base class of
DirectPosition2D but it is not common to use this type directly, only when it is necessary for
interacting with AWT libraries.
org.eclipse.swt.graphics.Point: This is the SWT equivalent of the AWT point. It should never
be used in Edex/Common code and should only be used in CAVE when interacting with SWT
directly.
double[]: This representation can be appealing because it does not lock you into any speci�c
library for representation. The downside is that it is not clear whether this is a single point,
which could be x,y or x,y,z or if this is a sequence of points and it is often a source of confusion
what to use when a method accepts or returns an array for a coordinate. This only place that
an array should be used for a single point is if it is absolutely necessary to use an existing
function call that takes an array. When representing many points the ef�ciency of a raw array
may make it a useful option, just ensure it is clear whether the array contains x,y points or x,y,z
points and consider using a class like PackedCoordinateSequence to give the data some
structure.
double x; double y; It is often tempting to use separate variables for the x and y components.
This is �ne for local variables and private methods but in general for reusable and
maintainable code it is better to use one of the other representations, code refactors often
move logic to new methods and it causes problems when the value is two variables that
cannot be returned together. Separate x and y variables also tends to clutter method
signatures, especially if the logic starts getting complex.

The same set of classes can be used to represent a variety of different positions, for example a
Coordinate for a Lat/Lon position is very different from a Coordinate for a position on a computer
monitor. To avoid confusion it is very important to indicate what type of position an Object
represents, when using geospatial position always indicate which CRS is used or which variable
contains the CRS used for the coordinate (CRS will be described more later). It is common for
variables representing Lat/Lon values to have names containing "ll" or "latLon", it is very important
to provide descriptive names and/or comments for variables representing a position.

Many of the coordinate representations have a third, z component for supporting a 3D
implementation. Most AWIPS code will ignore the z component of any class that has it, all
coordinates should be assumed to be 2D unless stated elsewhere speci�cally. Most classes and
libraries within AWIPS use a separate variable for any elevation information if it is available.

JTS and Geometries
AWIPS II uses the JTS library to provide the data representation and many algorithms for 2D
geometries. The most basic geometry class is com.vividsolutions.jts.geom.Geometry, there are
subclasses to represent things like Points, Lines and Polygons. Geometries are created using a
GeometryFactory, usually in AWIPS II new GeometryFactories are created when they are needed
using the default constructor. JTS provides extensive javadoc and there is also further
documentation and examples easily found on the internet of how to use JTS.

Coordinate Reference Systems
AWIPS II and the geotools library are written with the assumption that the earth is a 3-dimensional
ellipsoid but weather data and displays are usually represented in a 2-dimensional space. A
Coordinate Reference System (CRS) is used to describe how to translate the different 2D spaces
onto the earth and it is also possible to translate data from one CRS onto another. In order to
combine different data types or display any data in AWIPS II you must know the source CRS for any
data and what CRS you want to use for the display, and then it is possible to use
CRS.�ndMathTransform() to get a MathTransform which can be used to reproject the data. Simple
Lat/Lon data often doesn't include a CRS so DefaultGeographicCRS.WGS84 can be used as the CRS
for simple Lat/Lon data.

The basic idea of using a MathTransform to convert data to a different projection is very
straightforward and usually works well 90% of the time, however if you spend much time
developing geospatial code then you will inevitably run into times when it doesn't work. Here are
two common examples of the types of problems that come up:

�. If you look at a globe and draw a circle over the dateline (180° longitude) then reproject this
circle onto a standard Lat/Lon map that is split at the dateline it becomes 2 half circles. To
make things worse since the circles were connected, they will now be connected all the way
across the world. If you �ll in the circle with color then it turns into a streak across the entire
world. This has become known as a world wrap problem, although they are most common
along at 180° longitude it is possible for other projections to get this type of problem
anywhere in the world. The geotools library does not offer much help with this problem so
the WorldWrapCorrector has been developed to split geometries along to �x this.

�. If you have a standard Lat/Lon map of the entire world and you look at Antarctica then it is
roughly rectangular. If you try to make a polygon to represent this you will need points on the
bottom corners so that there will be straight edges and a straight line along the bottom. If
you take that polygon and you try to put it on a globe (or a southern polar stereographic map)
then you will run into problems. The points that were at the corners are now both at the
south pole, in fact they are the same point which makes it an invalid polygon. The 2 edges are
also the same line and the bottom line has just collapsed into a single point, you no longer
have a useful polygon. If you start with a valid Antarctica on a globe and transform to a
Lat/Lon map then you start off with a world wrap problem, however even if the line is split
correctly it still is not possible to generate a valid polygon because there are no corner points.
There is not currently a good way of handling this sort of problems near the pole. Often this
type of problem arises when data is displayed on a projection where it is not very useful, in
these cases it is often suf�cient to detect the problem and skip the problematic data.

Envelopes
ReferencedEnvelope. When working with spatial data we tend to think of rectangular areas
bounded by a lower left and upper right lat/lon. This is �ne as long as you work in a single map
projection. However, when changing projections (say, from unprojected lat/lon or mercator) to a
conic projection (like Lambert Conformal), that rectangle gets "curved" so now the bounding
lat/lon envelope must be expanded to include all the necessary points. The

org.geotools.geometry.jts.ReferencedEnvelope class can be used to help with this problem. See
com.raytheon.uf.common.geospatial.MapUtil getBoundingEnvelope method to see how to
convert an envelope in one projection to another.

Grid Geometries
GridGeometry. AWIPS II uses a lot of gridded data. This data consists of a rectangular array of data
values normally at evenly spaced points in a particular projection. The lat/lon of each sample is
called a gridPoint. When rendering this data as an image the data for a gridPoint is spread over a
rectangular area called a gridCell. The relationship between gridPoints and gridCells is not well
de�ned in most NWS documents (e.g., the Gridded Binary (GRIB) speci�cation). AWIPS II assumes
that the gridPoint is at the center of the gridCell. This seems to make the math work out to match
that in AWIPS I in most cases. The functions in com.raytheon.uf.common.geospatial.MapUtil that
transform coordinates from grid coordinates to lat/lon and vice versa allow you to specify the
PixelOrientation as CENTER, LOWER_LEFT, LOWER_RIGHT, UPPER_LEFT, or UPPER_RIGHT to allow
you to get the appropriate value for your use.

Advanced Problems
Float Precision

Be very careful when converting coordinates between a �oat and a double. Problems often occur if
a coordinate is converted back and forth because values that should be equivalent are not.
Sometime this is handled by using approximations instead of equals but it is always better if you
know speci�cally which primitive to use and consistently keep the precision the same.

Point-in-Polygon Queries

Can be sped up immensely by using PreparedGeometry. See
com.raytheon.viz.gfe.ui.zoneselector.ZoneSelectorResource setGeometry and contains
methods.

CRS Identi�ers

Developers who are familiar with other gis software may have seen CRS represented using
standard identi�ers such as EPSG:4326 or EPSG:3857. Identi�ers like these are rarely used in AWIPS
II because most projections used in AWIPS II are using custom parameters that are not de�ned by
the EPSG. When transferring or storing a CRS AWIPS II will use well known text (WKT) instead of an
identi�er because the WKT contains a full de�nition of the projection parameters. If you are
implementing capabilities that need to use an identi�er in AWIPS II it can easily be translated to a
CoordinateReferenceSystem object using CRS.decode(String). Here is an example of some CRS
WKT so that you will know what it is when you see it.

PROJCS["Lambert_Conformal_Conic_1SP",
 GEOGCS["WGS84(DD)",
 DATUM["WGS84",
 SPHEROID["WGS84", 6378137.0, 298.257223563]],
 PRIMEM["Greenwich", 0.0],
 UNIT["degree", 0.017453292519943295],
 AXIS["Geodetic longitude", EAST],
 AXIS["Geodetic latitude", NORTH]],
 PROJECTION["Lambert_Conformal_Conic_1SP"],
 PARAMETER["semi_major", 6371200.0],
 PARAMETER["semi_minor", 6371200.0],
 PARAMETER["central_meridian", -95.0],
 PARAMETER["latitude_of_origin", 25.0],
 PARAMETER["scale_factor", 1.0],
 PARAMETER["false_easting", 0.0],
 PARAMETER["false_northing", 0.0],
 UNIT["m", 1.0],
 AXIS["Easting", EAST],
 AXIS["Northing", NORTH]]

Bulk Coordinate Transformations

If you are trying to use a MathTransform on many points (thousands) then it is inef�cient to
transform each point individually, instead it is faster to copy all the data into a large double[] and
transform all the points at once. If possible the same array should be used for the source and
destination of the transform so that memory usage is minimized.

Displaying Large Datasets

For many types of data it is common to have more detailed data available than can be displayed at
once. There are some common techniques for breaking apart large data sets so that the data can
be displayed quickly while maintaining accuracy.

�. Decimate the data into smaller, less detailed versions of the product
�. Requesting only subsets of the decimated data
�. Dynamically updating the display to respond to pan/zoom by the user

The result is that the user has the data they want to see but each individual request is only for a
relatively small amount of data. This allows the requests to process quickly and the entire process
can occur in the background without detrimental impact to the user.

For example in the maps database there are points outlining each state, and California alone needs
50,000+ points to describe the details of the coastline. Trying to load all of the states at once would
request and render a prohibitively large number of points. If you look at a map of the entire
continental United States then you want to see 48 states but it is impossible to actually see all the
details in the database. In this example California is only a few thousand pixels on the screen so it is
unnecessary to draw 50 thousand points in the space available on the screen. The maps database
contains numerous different versions of each state that have been simpli�ed to remove some of
the �ne details. The smallest version of California has only 1500 points and would be much more
appropriate for a view of the entire country. If the user zooms in on California then AWIPS II
dynamically requests more detailed versions of California. As you zoom in the number of points for
each state increases but some states will no longer be visible and will be removed from the request,
so states like Florida quickly disappear which keeps the requests from getting large.

Large imagery data uses the same technique. For example when we ingest satellite data we get a
very high resolution product, and the product can have more pixels of data then there are pixels on
a computer monitor. AWIPS II stores multiple versions of the image at progressively lower
resolution, for example if a product is 8192x8192 then it might store another version at 4096x4096
and another at 2048x2048. For requesting subsets of images AWIPS II uses the concepts of tiles. At
a speci�c decimation level the data is divided into �xed size tiles, for example a 4096x4096 image
could be divided into 64 512x512 tiles. Then only the tiles that are actually on the display need to be
requested. As the user pans additional tiles can be loaded and as they zoom tiles from a different
decimation level can be loaded. This concept of decimating and tiling map imagery is very
common in web maps and more information can be found online. A good overview of webmap
tiling is available from mapbox (https://www.mapbox.com/help/how-web-maps-work/).

https://www.mapbox.com/help/how-web-maps-work/

Using the DAF from Python
The DAF can be used from either Java or Python. Since the vast majority of �eld development is
done in Python, that will be the focus of this document.

The core of the DAF lies in the DataAccessLayer class, so any script that will request data via the
DAF must �rst import this class.

Next, a DefaultDataRequest object is obtained, its parameters are set, available times are obtained,
and the data is requested. The following is a simple grid request of 500MB temperature from the
GFS40.

from ufpy.dataaccess import DataAccessLayer

req = DataAccessLayer.newDataRequest()
req.setDatatype('grid')
req.setParameters('T')
req.setLevels('500MB')
req.setLocationNames('GFS212')
times = DataAccessLayer.getAvailableTimes(req)
grids = DataAccessLayer.getGridData(req, times[:10]) # Get the first 10 times

How Does Ingested Data Get Into CAVE?
CAVE retrieves data through HTTP services provided by EDEX. By using the HTTP protocol, CAVE
can either connect to EDEX over the internet or connect locally over a LAN using the same
interface. To improve performance the requests and responses between CAVE and EDEX are
serialized into binary using Dynamic Serialize which is a serialization protocol built on top of the
Apache Thrift FOSS package. Figure 5-2 displays the CAVE-to-EDEX interface.

Figure 5-2. CAVE to EDEX Interface Through Thrift
CAVE data requests can originate through user actions such as menu selections or
automatically through ingest event noti�cations as described earlier.
CAVE may send one or many requests to load data. In some scenarios, CAVE may �rst
request metadata about what data is available in the system and then determine which data
to request based on con�gurations, time matching, or other parameters. In other scenarios,
CAVE may make a single request for each frame of data or a single request for all data that
meets constraints.
An implementation of the IServerRequest interface is used for all CAVE requests to EDEX.
AWIPS II contains many implementations, a few of which are shown in Figure 5-2. All CAVE
IServerRequests eventually go through the CAVE class ThriftClient to get to EDEX.
ThriftClient will send the request over to the HTTP service.
EDEX receives the HTTP requests and processes them through the RequestServiceExecutor
service. The service uses IRequestHandler implementations to process requests. Many
handler implementations exist in AWIPS II to deal with the various ways metadata and data
need to be returned to CAVE. After the handler processes the request, the response is
serialized and sent back to CAVE.

CAVE Graphics Tips
Keep the following tips in mind when working with graphics in CAVE:

Dispose of anything with a dispose method.
This includes Wireframe Shapes, Images, Fonts, and shaded shapes.
Failing to dispose may leak memory or graphics memory. It is very dif�cult to identify
leaking graphics memory but it will slow down CAVE.
For VizResources dispose of graphics objects in disposeInternal or whenever you no
longer need an object and might be losing a reference to that object.

Avoid creating graphics resources every time you paint.
Things like fonts, wireframe shapes, shaded shapes, and images should be created
when they are needed and reused as long as they remain unchanged.

If you have a different image or shape for every time in a resource you should
keep around all the different resources, you should not dispose and re-create
every time the user changes frames; this can lead to very slow looping.

Use bulk rendering whenever it is possible.
Most methods of IGraphicsTarget have methods that draw a single item and methods
that draw a group of items all at once; using the grouped methods will increase
graphics performance considerably.
The single draw methods are only intended to be used if you are drawing only a few
things.

In general, if a single resource is calling IgraphicsTarget.draw* more than a dozen
times, you should try to determine if any of the draw methods can be used in bulk
instead.
It is almost never a good idea to be calling
IgraphicsTarget.draw* inside a loop; instead, add items to a List and call draw all
at once.

You can combine multiple drawLine and/or drawRectangle calls by creating a wireframe
shape and adding lines to that.

wireframe shapes are more ef�cient than DrawableLine objects because they are
compiled to move the data onto the graphics card.

Use I*ImageCallback objects to retrieve data for images.
Callbacks were designed to let the target ef�ciently manage memory so that large
amounts of data can be loaded without running out of java heap space.
Read the javadoc on IColorMapDataRetrievalCallback and IRenderedImageCallback for
more information

Use IWireframeShape.allocate whenever possible.
If you have an idea how much memory you will need after you create the shape, then
allocate before adding any points.

If you need more space than allocated, it will allocate extra memory for you
without errors.
All unused space will be freed once compile is called.

Use IwireframeShape.addLabel only when it is applicable.
The reason a wireframe shape contains labels is so that the lines are not drawn on top of
the labels. There will be a gap in the lines where the label is. An example of this is
contours.
If you are drawing lines and labels that are not related, it is much better to handle them
separately. This would be the case for graphs and charts.

Remember that you are not guaranteed to be the only resource drawn.
To know if you need more optimization, you should ensure that your resource can pan,
zoom, and loop smoothly.
If your resource is good in a single pane, you should try it in a four panel; many
unoptimized resources slow down signi�cantly when switched to four panels.

If in D2D, load your resource in some side panels as well. Start everything looping and make
sure you can still smoothly pan and zoom.

Derived Parameters
The derived parameters framework is designed as an extendable way for calculating custom
weather parameters from existing data. It can combine different weather parameters, from
different layers in the atmosphere and even from different sources to calculate almost anything
you might want to see. The most extensive use of derived parameters is for grid data; however, it is
also used for point data.

The XML Files
Derived parameters is controlled largely by xml con�guration �les that contain instruction on how
to derive parameters. These xml �les will be in localization/derivedParameters/de�nitions/*.xml.
There is one �le per parameter and typically the name of the �le is the same as the parameter
abbreviation. Here is an example of the contents of DpD.xml

This de�nition de�nes a parameter named Dew point depression, which is known internally as DpD
with units K. To calculate Dew point depression you take the difference of the T parameter and the
DpT parameter, which is temperature and dewpoint.

The Python Files
The actual mathematical and logical operations that can be performed with derived parameters
are completely con�gurable and extendable using python scripts. These python scripts will be in
localization/derivedParameters/functions/*.py. In the previous section dew point depression was
calculated using a Difference method. This method is de�ned in a python script Difference.py. For
these scripts the �le name is always the method name that is used in the XML.

A script must provide a function de�nition named execute that contains the logic for that method.
The values are passed into python as numpy numeric arrays. The numpy library includes many
common operations that can be useful for doing calculations quickly. It is also possible to use any
features of the python language to calculate derived parameters.

Advanced XML
The DpD example of XML was very basic; there are many additional XML attributes that can be
used to control how derived parameters work and where the data comes from.

The DerivedParameter element is at the root of the XML document for any derived parameter
de�nition. All of the important attributes were given in the DpD example. The abbreviation
attribute is used within derived parameters as an id for a parameter. The name attribute is
something nicely formatted for display to the user. The units attributes is used for unit conversion
and style rules. A DerivedParameter may contain many Method elements, when a derived
parameter is requested each method is tried until one is found that is valid and for which the data
type has all available �elds.

For a Method element, in addition to the name you can also provide several other attributes,
including the following:

Levels. Limit which levels that method applies to; for example, if you specify levels="500MB"
and the user requests data on the 700MB level, then that method will be skipped over. The
valid values for this attribute are controlled by the LevelMappingFile.xml. Each key can serve
as a value for levels, or you can provide a comma separated list of these keys. In addition to
providing speci�c levels you can also provide a master level name; for example, levels="MB"

<DerivedParameter unit="K" name="Dew point depression" abbreviation="DpD">
 <Method name="Difference">
 <Field abbreviation="T"/>
 <Field abbreviation="DpT"/>
 </Method>
</DerivedParameter>

will apply that method to only MB levels. If no levels attribute is provided then the method
can be applied to any level for which the �elds are available.
Models. This is simply a space-separated list of the sources for which the method is valid.
dtime and ftime. These are time modi�ers. Both are boolean attributes. When either of these
is set to true, then �elds can specify a time shift that will be used to request data from a
different time than the derived parameter. This is useful for doing a parameter change over
time or an accumulation over time. The difference between dTime and fTime is that fTime
will only apply the time shift to forecast time so ref time must be the same for all �elds and
dTime will grab any data with a shifted valid time(ref time + forecast time).

There are two types of �elds that a method can have:
A ConstantField element, which has a single attribute, value, which is a number to use for
that argument; and
A Field element, which is used to guide derived parameters in selecting data to use in a
method. A Field element can have several attributes:

abbreviation speci�es which parameter to request for the �eld; this attribute is
required.
level is used to specify which level load data for this �eld. It must be a single key from
the LevelMappingFile.xml. If no level is provided then when a derived parameter is
requested it will use data on whatever level is being requested, when a level is provided
it uses that level instead.
model is used to import data between different sources; it must contain a single valid
source.
timeShift is used to request data from a different time than the derived parameter. The
time Shift is provided in seconds, a negative value will request past data and a positive
value will request future data, usually only useful with forecast data.

Using localization derived parameters XML de�nitions can be overridden by a site or a user. When
an override is provided the methods in the override are evaluated �rst before using the base �les.
The base �les are not ignored; they are just lowered in priority.

All Style Rules are managed by the StyleManager. Each instance of the StyleManager can provide
the style rules and preferences for those rules. To get the Style Rules from the StyleManager you
need to provide the StyleType and the MatchCriteria. The StyleType is an enum of available types.
There are several places in the code where the MatchCriteria are created. StyleRule preferences are
de�ned in xml con�guration �les. Most con�guration �le names end in StyleRules.xml. For
examples, search the baseline for *StyleRules.xml.

ArrowPreferences are used to set the scale of a GriddedVectorDisplay.

GraphPreferences are used to set label and line preferences for a graph.

ImagePreferences are used to set preferences on the CAVE display image.

In AWIPS II, gridded icon displays can be con�gured using derived parameters. For example, the
PTyp parameter displays as icons and is de�ned in the PTyp.xml derived parameter �le. Many of the
de�nitions for this parameter use the PTyp method, which is de�ned in PTyp.py. Within PTyp.py the
input parameters are combined and then mapped to very speci�c integer values. These values are
what determines the symbols to display. These values map to the AWIPS II Weather symbols font,
which is de�ned in /awips2/cave/etc/plotModels/WxSymbols.svg. In order to change what
symbols display, all you need to do is create a site-level PTyp.xml that contains a new method
de�nition to map to the symbols you want. Within the de�nition you can use any of the existing
python functions or create a new one that maps exactly how you like it.

StyleRule sr = StyleManager.getInstance().getStyleRule(StyleType.Imagery, matchCriteri
a);

ImagePreferences prefs = sr.getPreferences();

The Derived Parameter Tree and Inventory
In code the two most important data structures used within derived parameters are DataTree and
Inventory. The DataTree is a data structure that maps a source, parameter, and level to a LevelNode.
LevelNodes are the leaves of the tree and they contain the information for getting data for that
source/parameter/level combination. An Inventory object holds the DataTree, and dynamically
populates it with derived de�nitions when they are requested. The Inventory object is typically
created by an IDataCubeAdapter that is initialized when data is requested for a plugin.

The AbstractInventory class is meant to provide a base Inventory implementation which plugins
can extend to use derived parameters. The most important method to implement is
createBaseTree. This method is used on initialization to determine what base parameters a plugin
can provide as arguments to derived parameter. The leaves of this base tree should be
AbstractRequestableLevelNodes that are speci�c to that plugin. An implementation of
AbstractRequestableLevelNode will need to be capable of requesting data for a datatype. The two
responsibilities of an AbstractRequestableLevelNode are to be able to time query available data
and to be able to request data. The actual data request is handled by creating
AbstractRequestableData objects. These objects are very similar to a PluginDataObject; they
contain metadata about a speci�c record, the source/parameter/level and a datatime. They also
contain the logic needed for requesting the raw data when it is needed.

Derived parameters are added to the DataTree in the AbstractInventory.walkTree method. This
method allows you to provide a speci�c set of sources, parameters, and levels and they will be
resolved to AbstractRequestableLevelNodes using the DataTree and derived parameter de�nitions.
When calling walkTree you should try to be as speci�c as possible in what is requested to ensure it
returns quickly and does not create unneeded derivations. For more information on how walk tree
functions, see the java doc on that method.

Derived parameters are added to the DataTree as an instance of AbstractRequestableLevelNode.
The most important such class is DerivedLevelNode, and its operation provides a basic overview of
how all these nodes function. When a DerivedLevelNode is created it is supplied with other nodes
that serve as the arguments to derived parameters. These other nodes can be other derived
parameters or they can be the base nodes for a data type. When a request for a time query is made
to a DerivedLevelNode, it �rst time queries each of its dependency nodes, combines these times
and returns only times for which all dependencies are available. When a data request is made on a
DerivedLevelNode it �rst requests data for all the dependency nodes, and then passes this data to
the correct python script and retrieves a result record that can be returned. Because derived nodes
have dependency nodes and some of those nodes can be derived nodes with their own
dependencies, the whole thing forms a tree like structure, so each level node on the DataTree is its
own derivation tree.

The way grid handles derived parameters is using request constraints. Whenever a time query is
made to the data cube adapter, the adapter passes these constraints to the inventory which uses
them to �nd all possible source/parameter/level options that match those constraints and uses
walkTree to get all matching level nodes. The data cube adapter time queries each node and
returns the result. When data records are requested a similar process is followed, to get
RequestableDataObjects which are wrapped in GribRecords.

CAVE - Right-Clicking on the Legends
Each legend displayed in the bottom right corner of the editor can correspond to different maps
and resources, such as county boundaries or plots. Right-clicking on individual legends enables a
pop-up menu that can display different menu items to the user, such as Change Color and Line
Style. Developers can add more menu items to the pop-up menu and update the capabilities of
each resource.

Adding Menu Items
Menu items can be added to the pop-up menu by updating the �le
com.raytheon.viz.ui/plugin.xml (speci�cally, the extension for the point
com.raytheon.viz.ui.contextualMenu). Each menu item corresponds to a contextualMenu. For
example,

Notice the attribute actionClass. The value for this attribute should point to a child class that
extends the abstract class AbstractRightClickAction. In AbstractRightClickAction, the key methods
that need to be overwritten are getText and run. The method getText returns the actual text that
will be displayed in the pop-up menu. The method run executes when the menu option is selected.
Refer to ChangeColorAction for an example.

Another important attribute is the capabilityClass. The value of the capabilityClass points a child
class that extends the abstract class AbstractCapability. In the above example, the attribute is set to
com.raytheon.uf.viz.core.rsc.capabilities.ColorableCapability. Refer to this class for an example.
Setting the capabilityClass allows the capability to be available when referenced by the action class
when a getCapability is called.

<extension
 point="com.raytheon.viz.ui.contextualMenu">
 ...
 <contextualMenu
 actionClass="com.raytheon.viz.ui.cmenu.ChangeColorAction"
 capabilityClass="com.raytheon.uf.viz.core.rsc.capabilities.ColorableCapabili
ty"
 name="Change Color"
 sortID="10"/>
 ...
</extension>

CAVE - Right-Clicking In Editor
Right-Clicking in the editor enables a pop-up menu that can offer different options to the user,
such as Show Product Legends, Sample, Zoom, and Lat/Lon Readout. It is important to note that
the pop-up menu will appear when the right mouse button is held down. A simple click will toggle
the �rst menu item, that is, if the mouse click functionality has not been overwritten, such as in
WarnGen. It might be bene�cial to add more menu items common to the user in the pop-menu.
This addition can make work for the user convenient and timely.

If a developer wants to add more items, there are two important classes that are used:
�. com.raytheon.viz.ui.cmenu.AbstractRightClickAction; and
�. com.raytheon.uf.viz.d2d.ui.perspectives.D2DPerspectiveManager.

The AbstractRightClickAction object corresponds to each individual menu item while
D2DPerspectiveManager manages which AbstractRightClickAction objects to add to the pop-up
menu.

AbstractRightClickAction
For each menu option, an action class needs to be created that extends the abstract class
AbstractRightClickAction. The two key methods that need to be overwritten are getText and run.
The method getText returns the actual text that will be displayed in the pop-up menu. The method
run executes when the menu option is selected. Refer to LatLonReadoutAction for an example.

D2DPerspectiveManager
In the D2DPerspectiveManager, child classes of the AbstractRightClickAction are created. However,
it is the method addContextMenuItems that actually determines which AbstractRightClickAction
to add to the menu. For example, as seen with the following, legend modes can be used to
determine what kind of ChangeLegendModeAction to add.

@Override
public void addContextMenuItems(IMenuManager menuManager,
 IDisplayPaneContainer container, IDisplayPane pane) {
 ...
 D2DLegendResource ld = null;
 ...
 if (container instanceof SideView == false) {
 LegendMode mode = null;
 if (ld != null) {
 mode = ld.getLegendMode();
 if (mode != null) {
 switch (mode) {
 case NONE: {
 menuManager.add(getLegendAction(LegendMode.PRODUCT, ld));
 menuManager.add(getLegendAction(LegendMode.MAP, ld));
 break;
 }
 case PRODUCT: {
 menuManager.add(getLegendAction(LegendMode.HIDE, ld));
 menuManager.add(getLegendAction(LegendMode.MAP, ld));
 break;
 }
 case MAP: {
 menuManager.add(getLegendAction(LegendMode.HIDE, ld));
 menuManager.add(getLegendAction(LegendMode.PRODUCT, ld));
 break;
 }
 }
 }
 menuManager.add(sep);
 }
 }
 ...
}

CAVE Maps

Importing Shape�les
Local shape�les can be imported into the maps database using the automation tool. Files should
be staged in the following location where LLL is the WFO, e.g., OAX:

The shape�les should be added in a manner similar to the following:

The directory name of shape_desc above will determine the table name into which the shape�les
will be imported. For example, the following shape�les will create mapdata.oax_county schema in
the maps database:

To import the above shape�les staged into the database, run the following:

This option will also call the con�g_ffmp_shape�les script to load the FFMP shape�les.

For more details see https://collaborate.nws.noaa.gov/trac/sitecon�g/wiki/ADAM
(https://collaborate.nws.noaa.gov/trac/sitecon�g/wiki/ADAM).

How to Query Maps Database
com.raytheon.uf.common.geospatial.SpatialQueryFactory. Use this class' static method
create() to obtain an instance of a class that implements IspatialQuery.
com.raytheon.uf.common.geospatial.ISpatialQuery. This interface contains many
overloaded query(...) methods that all return an array of SpatialQueryResult[]. It also contains a
dbRequest(String sql, String dbname) that can be used to execute more general sql queries.
com.raytheon.uf.common.geospatial.SpatialQueryResult. This is a data class that contains
an instance of com.vividsolutiions.jts.geom.Geometry and a mapping of its attributes.
com.raytheon.edex.plugin.warning.gis.GeospatialDataGenerator The static method
queryTimeZones(...) is one example of using the above classes (see Figure 4-4). It performs a
query to get timezone information (lines 449-452) and then modi�es the attributes to contain
the information.

/awips2/edex/data/utility/edex_static/site/LLL/shapefiles

shape_desc/shapefile.(dbf|shp|shx)

/awips2/edex/data/utility/edex_static/site/OAX/shapefiles/OAX_County/OAX_County.dbf

/awips2/edex/data/utility/edex_static/site/OAX/shapefiles/OAX_County/OAX_County.shp

/awips2/edex/data/utility/edex_static/site/OAX/shapefiles/OAX_County/OAX_County.shx

./config_awips2.sh shp OAX

https://collaborate.nws.noaa.gov/trac/siteconfig/wiki/ADAM

Figure 4-4. Geospatial Data Generator

CAVE Features
CAVE uses features projects much differently than EDEX and resembles how Eclipse RCP intended
them to be used. CAVE, includes a feature project for groups of similar plugins; this is one of the
�rst projects that should be created when developing new plugins. An example of this includes
com.raytheon.uf.viz.d2d.core.feature, which is the feature project for all core D2D projects.
Another example is com.raytheon.uf.viz.cots.feature, which is the feature project for COTS
projects in CAVE. Feature projects contain two �les, build.properties and feature.xml. The
build.properties �le just states what should be included in a binary build and what should be
included in a source build. It will always have the feature.xml �le listed. The feature.xml �le
contains a list of plugins that should be included in the feature as well as a list of dependencies on
other features that this feature has. This dependency list should not only include features it will
directly depend on but also the features that its dependencies depend on and so on. Because this
method of using feature projects is only meant for CAVE, only viz and common plugins should be
added to features. If an EDEX plugin needs to be added, more than likely the needed code will
need to be moved to the common project.

Creating
In most cases, a developer of plugins will want to create a feature project for their plugins. To do
this, from Eclipse, select File->New->Project... Select the "Plug-in Development" folder and choose
"Feature Project." The "New Feature" wizard will open and a project name will need to be entered.
The naming convention usually looks something like:

Example: com.raytheon.uf.viz.thinclient.feature

In this example the creating_entity_url is "com.raytheon" and the component_name is "thinclient."
Once a feature name has been entered, change "Feature Name" to "<component_name> Feature"
and select "Finish" at the bottom of the wizard. Now that the feature project is created, open the
feature.xml �le and it should open in the Eclipse graphical editor's "Overview" tab. Switch to the
"Plug-ins" tab; it is here that the plugins the feature was created for can be added. Next, switch to
the "Dependencies" tab and add the features that are required. The most common features that all
other features depend on are:

com.raytheon.uf.viz.eclipse.feature
com.raytheon.uf.viz.cots.feature
com.raytheon.uf.viz.common.core.feature
com.raytheon.uf.viz.core.feature

The developer needs to determine the full list of plugins that are depended on and not in these
common features or the feature being created. It is not just the plugins that are directly depended
on that must be gathered; the dependencies of those plugins also must be determined, and so on
until an entire hierarchical dependency tree can be seen. At this point the features that the
dependency plugins are in will need to be added as dependencies to the developer's feature.

Modifying
There may be cases when a new plugin(s) needs to be added to an existing feature. Do this rarely,
and with extreme caution. It is important to begin by getting a list of the new plugin's
dependencies because you must be sure not to add dependencies to the feature project that will
cause a cycle. Once you have a list of dependencies for your new plugin, trace through the entire
dependency tree and get a list of the features your plugin depends on. Then, check to see if your
plugin depends on any features that are not currently dependencies of the feature you want to add
to. If there are no additional dependencies, you may add the plugin. If there are additional
dependencies, proceed only with high caution. You should probably look into adding a new feature
project for your plugin, but if you still wish to add the plugin to the feature project, you need to

<creating_entity_url>.uf.viz.<component_name>.feature

build a complete dependency tree of the additional feature(s) your plugin depends on. If none of
the dependencies in the tree can be linked back to the feature you want to add to, you may add
the plugin. Otherwise, you must create a separate feature for your plugin.

Building/Deploying
Once a feature project has been created, it must be set up to be used when running from Eclipse
and built for distribution. To run CAVE out of Eclipse with the feature enabled, open the
feature.xml �le in the project com.raytheon.viz.feature.awips. developer and switch to the
"Included Features" tab. Here the new feature project can be added as an included feature and the
plugins referenced in it will be used next time a "Synchronize/Run" from the developer.product �le
is done. In order to build a feature/group of features manually to be deployed, an Eclipse Update
Site project must be created. In Eclipse, go to File->New->Project..., and select "Plug-in
Development/Update Site Project." Give the update site project a name like:

Select "Finish" and an Eclipse project should be created with a single �le, site.xml. Open site.xml
and select the "Site Map" tab. Add the feature project(s) that should be built/deployed by the site by
selecting "Add Feature..." Note that only the feature projects created by the developer should be
added. Also note that now that a feature project has been added, more options appear in the
site.xml editor. Once added, the features can be built for deploy at any time by selecting the
"Synchronize..." button, then the "Build All" button. Once the build is �nished, there will be more
folders/�les in the plugin. The contents of the update site plugin can now be zipped up or copied
directly to a remote server directory to be installed to CAVE via the p2 director.

<creating_entity_url>.uf.viz.<component_name>.site

CAVE Alert Observer
This is a discussion of how to be noti�ed when an alert has arrived. This can be used to trigger
getting new data in order to update a GUI's display. This is handled by using the
ProductAlertObsever static methods to add and remove classes that implement the IAlertObserver
interface.

com.raytheon.viz.alerts.observers.ProductAlertObserver is the class with static methods for
adding and removing observer listeners that implement the IAlertObserver interface. The two
static methods are:

The ProductAlertObserver handles multiple observer lists based on the pluginName.

com.raytheon.viz.alerts.IAlertObserver is the interface an observer class must implement in order
to register with ProductAlertObserver. It contains a single method:

The implementing class can iterate though the alertMessages to determine what action it must
perform.
com.raytheon.uf.viz.cored.AlertMessage contains the alert's data URI (dataURI) and a mapping of
the decoded String (decodedAlerts).

Example. The example in Figure 4-1 shows how AvnFPS updates the viewer tab that contains the
Global Forecast System (GFS) Model Output Statistics (MOS) Guidance information for a site. The
tab name (MAV) is con�gurable, so it may change.

Figure 4-1. Example: CAVE Alert Observer
Determining the pluginName to use in order to register an observer can be tricky. You need to
determine what DAO was used to obtain the data and look up its bean information in the
appropriate xml �le. For our example, this is done by the BuferMosGFSData DAO. Looking at the
spring con�guration �le bufrmos-common.xml (see Figure 4-2), �nd the following bean de�nition,
which has the pluginName bufrmosGFS.

addObserver(String pluginName, IAlertObserver obs)

removeObserver(String pluginName, IAlertObserver obs)

alertArrived(Collection<AlertMessage> alertMessages)

Figure 4-2. Spring Con�guration File (bufrmos-common.xml)
com.raytheon.viz.aviation.monitor.GfsMonitorObserver is the class that implements the
IAlertObserver interface for updating the tab. It contains a static element pluginName that is set to
"bufrmosGFS". The alertArrived method determines which site, if any, of the sites it can display
needs to have its cache data updated. The currently selected site's display is also updated. See
Figure 4-3 for an illustration.

Figure 4-3. GFS Monitor Observer
com.raytheon.viz.aviation.observer.TafMonitorDlg is that class that controls the dialog display. Its
setupMonitoring method registers the observer:

Its cleanupMonitoring method does the unregister:

gfsObserver = new GfsMonitorObserver(this);
ProductAlertObserver.addObserver(GfsMonitorObserver.pluginName, gfsObserver);

ProductAlertObserver.removeObserver(GfsMonitorObserver.pluginName, gfsObserver);

Menu Customization

index.xml
CAVE automatically searches for index.xml �les in localization under menus/*. This allows a
developer to add a menu simply by adding an index.xml menu under this location using the
Localization perspective and having CAVE pick it up on the next restart.

Using the Localization Perspective
In CAVE, select the "Open Perspective" button -> Localization. This is both the preferred and the
easiest method of editing menus under CAVE -> Menus.

Command Menu Items
xsi:type = "command"
commandId = the command that was de�ned in the plugin.xml
menuText = the text to be seen in the menu
id = a unique id that describes the menu item

Example:

Bundle Menu Items
xsi:type = "bundleItem"
�le = name of the bundle in localization to load
menuText = the text to be seen in the menu
id = a unique id that describes the menu item

Example:

Title Menu Items
xsi:type = "titleItem"
titleText = the text to be seen in the menu
id = a unique id that describes the menu item

Example:

Separators
xsi:type = "separator"
id = a unique id that describes the menu item

Example:

<contribute xsi:type="command"
 commandId="com.raytheon.uf.viz.radarapps.rps.rpsListEditor"
 menuText="RPS List Editor..." id="${icao}RPSListEditor" />

<contribute xsi:type="bundleItem" file="bundles/DefaultRadar.xml"
 menuText="0.5 Z" id="${icao}058bitZ">
 <substitute key="icao" value="${icao}"/>
 <substitute key="product" value="94"/>
 <substitute key="elevation" value="0.5--0.5"/>
</contribute>

<contribute xsi:type="titleItem" titleText="------ Applications ------"
 id="${icao}Applications" />

Submenus
xsi:type = "subMenu"
menuText = the text to be seen in the menu

This surrounds the types that you want to go inside that submenu.

Example:

Including Other Menu Files
Other �les can be included within menus, and can either be whole submenus or just in the same
menu.

xsi:type ="subinclude"
submenu = name of the sub-menu
�leName = path of the �le in localization

Example:

Variable Substitution
Variable substitution allows for a single variable to be substituted across all levels inside the xml
�les. For instance :

Any time that "${icao}" is used from this point on in the calling for xml �les, "koax" will then be
substituted and used for the value. Certain plugins generate a single �le (index.xml) and have all
the substitutions in there allowing for dynamic values in the menus.

Automatically Customized Menus
Radar. Changing the radarsInUse.txt �le will regenerate menus on next CAVE restart. This �le
has sections for each type of radar (local, dial, Aggregation Service Routers (ASR), Air Route
Surveillance Radar (ARSR), terminal). This will change what shows up in the top menus as well
as under Radar -> Dial Radars.
Satellite. Based on the site that CAVE is localized to, the satellite menus will change to re�ect
East CONUS vs. West CONUS or non-CONUS.
Upper Air. Very similar to the radar menus, this is con�gured based on the raobSitesInUse.txt
�le.

<contribute xsi:type="separator" id="${icao}applicationsSeparator"/>

<contribute xsi:type="subMenu" menuText="${icao}">

<contribute xsi:type="subinclude" fileName="menus/radar/baseReflectivityMotion.xml" />
<contribute xsi:type="subinclude" subMenu="${icao} four panel"
 fileName="menus/radar/baseRadar4Panel.xml" />

<substitute value="koax" key="icao"/>

How to Write Dialogs for CAVE Classes
This is a guide to creating a CAVE dialog that does not block the User Interface (UI) thread. When a
dialog is open that blocks the UI thread alerts, other critical information will not be displayed in a
timely manner. Only the main dialog, CAVE, or the top dialog of a standalone product should be
blocking.

Problems with Blocking Dialogs
When a blocking dialog's open() is performed, a return does not happen until the dialog is
disposed. This makes it easy to perform the logic for any results returned by the open(). The
problem is that, apart from this dialog, the main active dialog (CAVE or a standalone dialog) must
be a blocking dialog. The UI thread has problems handling more than one blocking dialog.
Popping-up dialogs, such as an Alert, are queued up by the UI thread to be opened after the non-
main blocking dialog's open() returns. Thus, a forecaster will not see or hear an alert until after the
blocking dialog is disposed. Having the blocking dialog minimized does not help.

To get around this problem, CAVE has the classes CaveSWTDialog and CaveJFACEDialog, which
can be extended to make non-blocking dialogs. These two classes are explained in the following
sections Converting to CAVESWTDialog and Converting to CaveJFACEDDialog.

Finally, a blocking dialog may not be modal, and a modal dialog does not have to be blocking. A
modal dialog prevents its parent from being changed while it is open. Normally, with this behavior,
a modal dialog also blocks because nothing much can be done while it is open. With
CaveSWTDialog, a dialog can be made modal and non-blocking, preventing the problems
associated with a blocking dialog but still having the behavior of a modal dialog.

Converting to CAVESWTDialog
Eclipse contains two useful dialog classes; both are named Dialog. To aid in converting dialogs that
extend these classes, CAVE has two classes. If you are converting a class that extends the Dialog in
the org.eclipse.jface.dialogs, see the following section Converting to CaveJFACEDDialog.

Guidance on converting a dialog that extends the Dialog in the org.eclipse.swt.widgets package
to a CaveSWTDialog follows.

Verify the MANIFEST.MF for the imports com.raytheon.viz.ui
Change the class declaration for example:

to

Look for a class variable such as Shell shell and remove it because it will mask the variable
set up by CaveSWTDialog.
Look for the open() method:

and convert to:

This is a method called by CaveSWTDialog to generate the dialog when its open() is
called the �rst time.

In this method you may �nd:

public class TheDialog extends Dialog … {

public class TheDialog extends CaveSWTDialog … {

public Object open() {

@Override
protected void initializeComponents(Shell shell) {

Shell parent = getParent();
display = parent.getDisplay();

Most likely there is no need for the parent shell. You can get the display from the
shell:

The old open() will contain lines such as the following, which need to be removed:

The SWT constant argument should be moved to the second argument of the
constructor's super and the text can also be set there:

Notice that the third argument on the super call is for CAVE's dialog information.
For now it has the placeholder CAVE.NONE, which leaves the dialog in its default
blocking mode. This will be changed later.

What normally follows in the old open() is the code to set up the dialog's display. For the
blocking dialog there will be something like:

This is the blocking loop from the old open(). This code needs to be removed.
Any code after this loop handles cleanup such as disposing of fonts preparing any
return values. This should be handled by overriding the disposed() method and
placing the code there.

If the old open() returns a non-null value, use the setReturnValue(returnValue) method
to provide the value it should return when disposed. See Get Results from a Dialog
Using the ICloseCallback Interface, for more details.

If you have buttons that need to close the dialog use the close() method. This will eventually
call the disposed() method.
At this point you should have a CaveSWTDialog derived dialog that is blocking and works the
same as the old Dialog. This would be a good time to test it in all the places it is called prior to
making it a non-blocking dialog.
There are many ways in which a dialog can be created and opened. This will follow a typical
example. Others should be similar. Assume we have a method in the parent for handling the
dialog and the old method has the following pattern:

Here, no results of the dialog are used. Because the dialog is currently blocking, the open()
does not return. If the dialog is non-modal, it is possible with this example to display more
than one instance of the dialog. To prevent this, you may see code such as the following:

display = shell.getDisplay();

shell = new Shell(parent, SWT.DIALOG_TRIM | SWT.PRIMARY_MODAL);
shell.setText("The Dialog");

public TheDialog(Shell parent, ...){
 super(parent, SWT.DIALOG_TRIM | SWT.PRIMARY_MODAL, CAVE.NONE);
 setText("The Dialog");

shell.pack();
shell.open();
while (!shell.isDisposed()) {
 if (!display.readAndDispatch()) {
 display.sleep();
 }
}

private void handleTheDialog() {
 TheDialog theDialog = new TheDialog(shell, …);
 theDialog.open();
}

This will display only the one instance of the dialog when it is blocking. However, when
the dialog becomes non-blocking, the open() immediately returns allowing multiple
instances of the dialog.

Look for shell listeners that clean things up when the shell is closed. Instead override the
disposed() method and do the cleanup there. Most likely you will then be able to get rid of the
listener:

With a CaveSWTDialog derived dialog the open() handles re-creating a dialog once it is
disposed. If it is currently open or hidden, it will bring the dialog to the top. Thus only one
instance of the dialog needs to be created:

This allows a single instance of the dialog to be created and forces creation of a new
dialog with everything within the dialog set to its initial state.
To make the dialog non-blocking go to its constructor, change the CAVE.NONE to
CAVE.DO_NOT_BLOCK.
Note: The Dialog may obtain information from the parent dialog used by its constructor
or initialization methods. For example, a spell checker may get information from a
StyledText area in the parent dialog. The text may change between opening of the
dialog so changes will need to be done prior to displaying the dialog. This can be done
by overriding this method:

private TheDialog theDialog = null; // A class variable

…

private void handleTheDialog(){
 if (theDialog != null){
 theDialog = new TheDialog(shell, …);
 theDialog.open();
 theDialog = null;
 }
}

shell.addShellListener(new Shell Adapter()){
 @Override
 public void shellClosed(ShellEvent event){
 // Code here move to the disposed() method.
 …

 }
});

private TheDialog theDialog = null;

…

private void handleTheDialog {
 if (theDialog != null || theDialog.isDisposed()){
 theDialog = new TheDialog(shell, …);
 theDialog.open();
 } else {
 theDialog.bringToTop();
 }
}

@Override
protected void preOpened() {
 super.preOpened(); // Must do this
 // Any setup prior to dialog display may go here.
}

When the dialog open() is called, this method is always invoked just prior to
displaying the dialog.

See Get Results from a Dialog Using the ICloseCallback Interface, for guidance on how
to obtain and use the results from a dialog.

Converting to CaveJFACEDDialog
Eclipse contains two useful dialog classes both named Dialog. To aid in converting dialogs that
extend these classes, Cave has two classes. If you are converting a class that extends the Dialog in
the org.eclipse.swt.widgets see the section on Converting to CAVESWTDialog
(EConverting_to_CAVESWTDialog).

Guidance on converting a dialog that extends the Dialog in the org.eclipse.jface.dialogs package
to a CaveJDACEDialog follows.

Normally this type a dialog is modal blocking and expects results to be returned. Blocking open()
returns an integer result of Window.OK if something is to be performed with the result. To perform
the conversion, take the following steps.

Verify the MANIFEST.MF for the plugin imports com.raytheon.viz.ui
Change the class to extend CaveJFACEDDialog instead of Dialog.
You should now have a blocking dialog that replaces the old dialog.
Now look at the constructor and look for the following pattern:

To simplify your return callback, create a getter method for the resultsObject.
Like the CaveSWTDialog, the open() method will open the window or, if it is already displayed,
bring it to the top. In the parent where the dialog is used, you can make a blocking version
using the following code pattern:

Converting this to non-blocking is covered in the next section (Get Results from a Dialog
Using the ICloseCallback Interface).

Get Results from a Dialog Using the ICloseCallback
Interface
Both the CaveSWTDialog and the CaveJFACEDialog use the ICloseCallback interface to obtain
values from a non-blocking dialog after it is closed. For both types of dialogs there is a
setCloseCallback method. When a non-null interface is passed in via this method it will be called
when the dialog is closed. The interface must implement a single method:

public TheJfaceDialog(Shell, shell, Object resultsObject, …) {
 super(shell);
 …
 this.resultsObject = resultsObject;
 …
}

...
private TheJfaceDialog theJfaceDialog = null; // class instance variable
…
private void handleTheJfacedDialog {
 if (theJfaceDialog = null) {
 ResultObject resultObject = new ResultObject(...);
 theJfaceDialog = new JfaceDialog(getShell(), resultObject,...);
 theJfaceDialog.setBlockingOnOpen(true);
 }

 int state = theJfaceDialog.open();
 if (state = Window.OK) {
 // get the result and do the update here.
 ResultObject result = theJfaceDialog.getResultObject();
 ….
 }

https://vlab.noaa.gov/group/awips-community/EConverting_to_CAVESWTDialog

With a dialog that extends CaveJFACEDialog the returnValue will be an instance of type Integer.
With the CaveSWTDialog, the returnValue will be whatever was passed to the last call of
setReturnValue(object). If never called, it will return a null.

The following takes the blocking example in the CaveJFACEDialog and converts it to a non-
blocking dialog. CaveSWTDialog is handled in a similar manner where you test to see if the
returnValue is an instance of what is needed:

Note: The setBlockingOnOpen(false) forces the open() to be non-blocking. This is only for
dialogs that extend CaveJFACEDialog.
The line theJfaceDialog = null is optional for dialogs with complex setups. It may be easier to
set it to null to force a new instance of it to be created the next time it is needed.
With a CaveSWTDialog type dialog, the line if (returnValueinstanceof Integer){ can check for
the expected return type object. As long as the setReturnValue is only called when the dialog
has something to return, the result will be null when the dialog is canceled and nothing will
be performed by the callback.

Making a Non-blocking Dialog a Standalone Blocking
Dialog
Once a dialog is converted to non-blocking, it will work great in CAVE. Take the TextWorkstationDlg
for example. Its constructor is:

public void dialogClosed(Object returnValue) {…}

...
private TheJfaceDialog theJfaceDialog = null; // class instance variable
…
private void handleTheJfacedDialog {
 if (theJfaceDialog = null || theJfaceDialog.isDisposed()) {
 ResultObject resultObject = new ResultObject(...);
 theJfaceDialog = new JfaceDialog(getShell(), resultObject,...);
 theJfaceDialog.setBlockingOnOpen(false);
 theJfaceDialog.setCloseCallback(new IcloseCallback() {
 @Override
 pubic void dialogClosed(Object returnValue) {
 if (returnValue instanceof Integer) {
 int value = (Integer) returnValue;
 if (value = Window.OK) {
 // Perform the update here
 ResultObject resultObject = theJfaceDialog.getResultObject();
 …
 }
 }
 theJfaceDialog = null;
 }
 });
 theJfaceDialog.open()
 } else {
 theJfaceDialog.bringToTop();
 }
}

public TextWorkstationDlg(Shell parent) {
 super(parent, SWT.DIALOG_TRIM | SWT.MIN | SWT.RESIZE,
 CAVE.PERSPECTIVE_INDEPENDENT | CAVE.INDEPENDENT_SHELL
 | CAVE.DO_NOT_BLOCK);
 setText("Text Workstation");
 …
}

Notice the additional CAVE constants in the super's third argument, which generate an
independent dialog with proper window trimmings for a full-blown window dialog. The only
change was to add:

This works great when running in CAVE. Now take a look at TextWorkstationComponent where it is
set up to run as a standalone component:

When this is run by the plugin, the open() no longer blocks so the method returns right away. This
results in the dialog �ashing on the screen and then the program exits. To prevent this from
happening, a new class was created to extend AbstractCAVEDialogComponent. It contains an
additional method to perform the blocking. So, the above will work with the following changes:

| CAVE.DO_NOT_BLOCK

public class TextWorkstationComponent extends AbstractCAVEComponent {
 …
 @Override
 protected void startInternal(String componentName) throws Exception {
 SerializationUtil.getJaxbContext();
 TextWorkstationDlg textWorkstationDlg = new TextWorkstationDlg(
 new Shell(Display.getCurrent()));
 textWorkstationDlg.open();
 }
 …

public class TextWorkstationComponent extends AbstractCAVEDialogComponent {
 …
 @Override
 protected void startInternal(String componentName) throws Exception {
 SerializationUtil.getJaxbContext();
 TextWorkstationDlg textWorkstationDlg = new TextWorkstationDlg(
 new Shell(Display.getCurrent()));
 textWorkstationDlg.open();
 blockUntilClosed(textWorkstationDlg);
 }
 …

SWT
SWT uses the native widgets of the operating system. The life-cycle of the widgets' Java object
mirrors the life-cycle of the native widget that it represents. When the Java widget is created, the
native widget is created, and when the Java widget is destroyed, the native widget is destroyed.
The design avoids the issues of calling methods on a code object before the underlying widget has
been created.

Display Object
The Display object is the connection between the application SWT classes and the underlying
windowing system. The Display class is windowing-system dependent and may have additional
methods available on some platforms.

Each application will have only one Display object.
The "User-Interface" thread that creates the Display object is the thread that executes the
event loop.
An important task of the Display class is the event-handling mechanism.
The Display class keeps a collection of the registered events from the operating system level
event queue and delivers the events to the registered listener.
The Display object forms the GUI foundation but doesn't display any graphics to the screen.

Shell Object
The shell object represents a window/dialog. A shell can be either a top level shell or regular dialog
shell. The Shell follows the SWT pattern of passing in a parent and style into the constructor.

Top-Level Shell
A top-level shell:

Takes a Display object as the parent.
Will show up as a separate application on the operating system's task bar.
Can be minimized to the operating system's task bar.

Regular/Dialog Shell
A regular/dialog shell:

Takes another shell as the parent.
Will not show up as a separate application in the operating systems task bar.
Will be minimized when the parent dialog is minimized.
Can be set up to block the parent dialog.

Disposing of Widgets/Objects
SWT works directly with the native graphics resources. Each SWT resource consumes a GUI
resource. Because all GUI resources are limited across all platforms, a timely release of resources are
vital. SWT widgets have to be disposed of manually because the Java garbage collector never
guarantees a timely release so it is considered to be a poor manager of GUI resources.

When widgets are created, a parent widget is passed into the constructor (example parent widget
would be a Shell, Composite, or Group). The lifetime of the parent component constrains the
lifetime of the child component. So when that parent is disposed of the child get disposed of as
well.

These are the rules for disposing widgets:
If you create, you dispose it.

Because native resources are created when an SWT object is created, the object needs
to be disposed when it is no longer used.

If you do not call the constructor to get a resource, then you must not dispose of the
resource.

Why? Because the resource does not belong to you. It is considered "borrowed."
Disposing of the parent will dispose the child.

Calling the dispose() method for every object would be very time consuming.
Since each widget has a parent, disposing of the parent will take care of the children.
This ensures that all of the resources get disposed.

Layout Overview
Layouts provide a layer between the widgets in a Composite and the Composite itself. They de�ne
where to place widgets in a Composite.

You set the Composite's layout by using the setLayout() method, and there can only be one layout
per composite.

Composites can be nested and each Composite can have a layout independent of the other
Composites.

Types of Layouts
FillLayout

FillLayout is the simplest layout.
The widgets are placed in a single column or a single row and are all the same size.
There are two possible styles for the FillLayout: SWT.HORIZONTAL and SWT.VERTICAL.
You can con�gure the FillLayout by setting member data (marginHeight, MarginWidth,
spacing, etc.).

RowLayout
RowLayout is similar to FillLayout as it places widgets in a single row or column.
It does not force the widgets to be the same size.
If widgets will not �t on a single line they wrap to the next line or column.
RowLayout uses the RowData class to con�gure the setting for the layout.

Each widget must have its own instance of the RowData object.
Reusing the same RowData object will yield undesired results.

Like the FillLayout, RowLayout also has member data that can be set to �ne-tune the
placement of the widgets.

GridLayout
GridLayout offers more �exibility than RowLayout or Fill Layout. GridLayout is the most
commonly used layout in AWIPS II.
GridLayout arranges the widgets/Composites in a grid pattern.
Widgets are added left to right, top to bottom.
GridLayout uses the GridData class to con�gure the setting for the layout.

Each widget must have its own instance of the GridData object.
Reusing the same GridData object will yield undesired results.

Like the FillLayout and RowLayout, GridLayout also has member data that can be set to �ne-
tune the placement of the widgets.
The two most commonly used attributes of GridLayout are the number of columns and a �ag
to determine if the grid cells should be forced to be the same width or height.
A widget may span multiple rows or columns.
A widget can �ll the remaining space horizontally, vertically, or both.

StackLayout
The StackLayout stacks all of the Composites on top of each other (think of a deck of cards
where only one card is visible).
Only the top Composite is visible.
All of the stack layers occupy the same amount of space.

FormLayout
FormLayout is the most complex of all the layouts.
Like other layouts, FormLayout uses a layout data class (FormData).
FormData is crucial when using the FormLayout.

If FormData is not used, then all of the widgets will be placed on top of each other.

FormData uses the FormAttachment class to control widget sizing and placement.
Up to four FormAttachment instances can be set in the FormData object of the widget.
Each instance of the FormAttachment corresponds to one side of the widget:

Top, Bottom, Left, and Right.
FormAttachment de�nes the following:

How widgets position themselves with respect to the parent Composite or to other
widgets within that Composite.
How the side of the widget it belongs to positions/sizes itself to the object it is attached
to (parent Composite or other widget).

Composite/Group Overview
Composite and Group are containers used to hold widgets and other Groups or Composites
objects. These containers can have a layout applied to them to dictate how to arrange other
containers and widgets.

Composite
A Composite is the most commonly used container in AWIPS II. It features include the following:

A Composite can have a border to show the boundaries.
A Composite's background can have different colors.
A Composite can only have one layout.

A ScrolledComposite is a container just like a Composite. It has a de�ned area that will scroll
horizontally/vertically when the widgets will not �t in the boundaries of the ScrolledComposite.

Group
A Group is the same as a Composite except that a Group has a border and a title that appears in
the top-left corner of the Group. Groups are used to group widgets visually.

The border of the Group can be altered using a "hint" when constructing the object.

SashForm
A SashForm is a container that can have other containers added. A divider in the SashForm allows
the user to resize how the space is divided.

On certain operating systems, the SashForm widget is not visible and is only represented by what
appears to be "dead space." One approach to making it stand out is to color the background of the
SashForm.

Widget/Control Overview
Widgets are objects that are placed on a dialog that the user interfaces with. A Control subclasses
the Widget object. "Widget" and "Control" are terms that are used interchangeably, so, for this
documentation, the term "Widget" will be used because Controls inherit from the Widget class.

Widget characteristics include the following:
Widgets have a parent (usually a Shell or a Composite/Group).
Most widgets cannot be sub-classed (cannot be extended). Check the Javadoc of the widget
to determine if it can be sub-classed.
All widgets have a setData() and getData() methods. The setData() method stores a plain Java
object and the getMethod() will retrieve the object.
Controls can have a ToolTipText. A ToolTipText is a box that appears when the mouse hovers
over a Control. It usually displays information about the control.

The following are commonly used widgets:
Button

Buttons can display text, an image, or both.
Button types are determined by setting a "hint" when creating the widget.
Buttons can change the font of the text.

On some operating systems, the foreground and background colors can be changed.
Common button types include:

Push. A single click push button widget. SWT.PUSH is passed in when creating the
widget.
Arrow. Like a push button but displays an arrow icon in the button. SWT.ARROW is
speci�ed in the constructor along with one of the following: SWT.UP, SWT.DOWN,
SWT.LEFT, or SWT.RIGHT.
Check. Displays a checkbox and text that is used to display an on/off state.
SWT.CHECK is passed in when creating a widget.
Radio. Displays a radio button and text and displays an on/off state. Once a radio
button is selected, only selecting another radio button can unselect it. SWT.RADIO
is passed in when creating a widget.
Toggle. A toggle button is a cross between a push button and a check-box. It
maintains an on/off state once it is clicked. SWT.TOGGLE is passed in when
creating a widget.

Canvas
A canvas is a widget that is speci�cally designed for graphics operations.
A canvas can draw lines, shapes, and text.
Canvases can receive mouse events.
In AWIPS II, canvases have been used to draw custom controls.

Combo
A combo widget is a hybrid of a text and a list widget.
Combo boxes allow users to choose from a list of choices or the user can enter text not
found in the list.
Combo boxes do not take up as much room as a List control because it hides its
information until it is displayed.
Only one item at a time may be selected.
There are three styles available for combo widgets:

SWT.DROP_DOWN. A combo box where the list "drops down" to show the
available items. A user can type in the combo widget. The item typed in does not
automatically get added into the list. Selecting an item from the list will erase the
item that was typed in.
SWT.READ_ONLY. Restricts the user from typing in any inputs.
SWT.SIMPLE. On certain operating systems, this will make the list always visible.
However, this does not work on the Linux platform, and SWT.SIMPLE works
exactly like SWT.DROP_DOWN.

Label
This is a non-editable widget that displays text or an image.
It cannot display an image and text at the same time.
Labels can have a border.
The foreground, background, and font can be changed on a label.

List
Using hints, a List can have single or multiple selections.
A List does not specify a border by default so a border needs to be speci�ed when the
object is created.

Lists will only display strings. In most cases, a List object would be paired with an
array of data where the index in the data array would match the index in the list.
List boxes can be created with horizontal and/or vertical scrollbars. If no scrollbars
are speci�ed, the text will be hidden when the control is resized to be smaller than
the area of the text.

ProgressBar
A ProgressBar is a widget that is used to visually show progress.
ProgressBars can be horizontal of vertical

Horizontal - progression moves from left to right
Vertical - progression moves from bottom to top

There are two types of ProgressBars:
SWT.SMOOTH

Slowly �lls the bar until full, and updates based on what the "selection value"
is set to.
When using the "smooth" style ProgressBar, the ProgressBar is usually
updated by actions that occur in a separate thread.
Trying to update the ProgressBar in the event loop will yield an all-or-
nothing result as the GUI does not update until the task is complete.

SWT.INDERTERMINATE
The ProgressBar indicator moves back and forth forever until the
ProgressBar is hidden or removed.

Scale
The Scale widget is a lot like the Slider widget as it allow the user to slide a "tab" up and
down a scale to adjust a value.
Unlike Slider, Scale does not have arrow buttons on each side of the control.
"Ticks" or "Hashes" are located on both sides of the Scale (Windows platform only).
You should specify minimum and maximum values for the Scale.

Note: When changing the min and max values, make sure the min is never set to
a number higher than the max before the max is set. When the min value is set
higher than the max value, at run time the code will reset the minimum value.
The same thing goes for setting the max value lower than the min value.
Example: If min is 0 and max is 100 and you want the min to be 1000 and the max
to be 2000, �rst set the max to 2000 and then set the min to 1000.

Scale can be positioned horizontally or vertically.
ScrollBar

ScrollBars appear and function like Sliders.
ScrollBars have a movable thumb that is used to:

Scroll the contents of the widget.
Visually represent the position.

Arrows are located at the end of the ScrollBar to increment or decrement the ScrollBar.
You do not actually create ScrollBars as they are built into widgets.
To access a ScrollBar from a Widget, use the getVerticalBar() or the getHorizontalBar().

Slider
The Slider control in SWT looks a lot like a ScrollBar.
The Slider can be in a horizontal or vertical position.
You can set the minimum and maximum values of the Slider.
When setting the maximum value of the Slider, you must take into account the size of
the thumb bar.

Example: If you want to have the Slider go from 0 to 100, you must add the thumb
size to the maximum, i.e., value.
slider.setMaximum(100 + slider.getThumb()).

Spinner
Spinner is a control that allows the user to enter and modify numerical values.
Integer or decimal values can be used.
The Spinner control has up and down arrow buttons that allow the user
increment/decrement the value.

The amount that is incremented/decremented is con�gurable.
Minimum and maximum values of the Spinner can be speci�ed.

StyledText
The StyledText widget is a more advanced version on the Text widget.
The StyledText widget allows a user to type information into a text �eld.
StyledText widgets do not have a border by default.

Use SWT.BORDER to make the Text control have a border.
StyledText widgets have cut, copy, and paste methods to conveniently cut, copy, paste
text from/into the widget.
StyleRange:

A StyledText widget uses the StyleRange object to specify styles for a range of text
in the StyledText widget.
StyleRange can change the background and foreground colors, font, font style,
underline, and strikeout.

StyleRange is also used to identify sections of text. StyledText can contain an array
of StyleRanges, each representing a section/range of text.

TabFolder & TabItem
TabFolders allow several "pages" of information to be stacked on top of each other, and
the "pages" are accessed by clicking on the individual tabs.
Depending on the platform, tabs can be displayed on the top or bottom TabFolder.

Top is the default.
The location of the tabs is speci�ed by using a style when creating the TabFolder.

Each tab on a TabFolder is a TabItem.
A TabItem can contain an image, text, or both.
When creating a TabItem, the parent is the TabFolder.
The TabItem is also the area that displays Composites/Widgets.
All of the TabItems will be the same size. The TabItem with the most area will determine
that size for all TabItems.
To add contents to a TabItem you use the setControl() method.

Note: The setControl() method takes a single control as an argument.
Use a Composite (which is subclassed to Control) to display multiple
controls/layouts in a TabItem.

Table & TableItem
Tables display data in a tabular format.
Tables can have table columns, which can display an image, text, or both.
Each row in a table is a TableItem object.

A TableItem is an array of data that is displayed in a table row.
Each "cell" of the TableItem can have its font and foreground/background colors
changed.

A TableEditor can be used to add widgets like Button, Combo, and Label to the table.
The Table is a very simple widget, and anything other than basic functionality provided
by SWT must be handwritten. For example, JAVA Swing uses abstract table models that
can be highly customized and can be swapped out of a table, it also takes care of the
table columns. In SWT, the Table widget requires a lot of extra coding to take care of
managing the data.
The Table widget has a virtual capability that will only load the data that is displayed in
the table. The data will not be loaded until the table is scrolled.

Text
The Text widget allows a user to type information into a text �eld.
The Text widget can be a single line or multiple lines.
Text widgets do not have a border by default.

Use SWT.BORDER to make the Text widget have a border.
Text widgets have cut, copy, and paste methods to conveniently cut, copy, and paste
text from/into the widget.
The Text widget features a password style that replaces the text with asterisks or a
symbol when the user types into the �eld.
You can change the font of the text.

Tray & TrayItem
The Tray widget represents the system tray from the operating system.
The TrayItem widget represents icons that can be placed on the system tray or task bar
status area.
TrayItems can have images, tool tips, and popup menus.

Tree & TreeItem
Trees provide a selectable user interface object that displays a hierarchy of items and
issues noti�cation when an item in the hierarchy is selected.
The children that may be added to instances of Tree must be of type TreeItem.
Using a VIRTUAL style creates a Tree whose TreeItems are to be populated by the client
on an on-demand basis instead of up-front. This can provide signi�cant performance
improvements for trees that are very large or for which the TreeItem population is
extensive (for example, retrieving values from an external source).

Menu & MenuItem
Three types of menus are available in SWT:

�. Bar menus. Typically displayed at the top of the parent window (SWT.BAR).
�. Dropdown menus. Menus that drop down from a bar menu, a popup, or another dropdown

menu (SWT.DROP_DOWN).
�. Popup menus. Menus that will display at the mouse cursor location and disappear when the

user selects an item (SWT.POP_UP).

Submenus are menus that appear/popup off of an existing menu item that displays an arrow on
the right side of the menu. Submenus appear when the mouse hovers over the MenuItem the
submenu is associated with.

MenuItems that have submenus have a cascade style (SWT.CASCADE).

MenuItems can have a radio or check style.
A menu item with a radio style behaves like a radio button (SWT.RADIO).
A menu item with a check style behaves like a check box button (SWT.CHECK).

A popup menu is just a menu that is assigned to a widget (like a Button or List). Popup Menus:
"Pop up" when the right mouse button is clicked.
Can contain cascading (dropdown) menus, check menu items, radio menu items, and
separators.
Can be associated with a Shell, composites, or widgets.

Events & Listeners
SWT offers two types of listeners: untyped and typed.

Untyped:
Untyped listeners can lead to smaller code.
An untyped event listener can be registered to listen for any type of event. SWT has two
classes for untyped event:

An interface Listener.
An event class named Event.

Typed:
Typed listeners lead to more modular designs.
Typed listeners use classes and interfaces speci�c to each possible event.
For example, to listen for a button click, register a SelectionListener implementation
with the button using the button's addSelectionListener() method.
All typed events ultimately derive from a common class: TypedEvent.
Many event classes have a boolean member called "doit" that you can set to false to
cancel the processing of that event.
SWT provides implementations of every listener interface that has more than one
method. The names of these classes end in Adapter.

Font Overview
Instances of the Font class manage operating system resources that de�ne how text looks when it
is displayed.

Fonts may be constructed by providing a device and either name, size, and style information, or a
FontData object that encapsulates this data.

Application code must explicitly invoke the Font.dispose() method to release the operating system
resources managed by each instance when those instances are no longer required.

"System Fonts" returns a reasonable font for applications to use. On some platforms, this will match
the "default font" or "system font" if such can be found. This font should not be freed because it was
allocated by the system, not the application.

Typically, applications that want the default look should simply not set the font on the widgets they
create. Widgets are always created with the correct default font for the class of user-interface
component they represent.

Color Overview
Instances of this class manage the operating system resources that implement SWT's Red, Green
Blue (RGB) color model. To create a color you can either specify the individual color components as
integers in the range 0 to 255 or provide an instance of an RGB.

Application code must explicitly invoke the Color.dispose() method to release the operating system
resources managed by each instance when those instances are no longer required.

"System Colors" returns the matching standard color for the given constant, which should be one
of the color constants speci�ed in class SWT. Any value other than one of the SWT color constants
which is passed in will result in the color black. This color should not be freed because it was
allocated by the system, not the application.

Built-in SWT Dialogs
SWT has built-in convenience dialogs. Dialogs are used to get quick inputs from the user.

Some of the available dialogs include the following:
Message Box Dialog

Message boxes are used to display messages and to get con�rmation from the user.
Message boxes display icons along with messages.

Icon styles may be different between platforms
If an icon is not supported then a default icon is used

Message boxes have different button styles that determine which buttons will be
displayed on the message box.

Color Selection Dialog
The Color Selection Dialog is a dialog that allows a user to select a color.
The look and feel of the Color Dialog is different between each platform.
When a color is selected a RGB value is returned.
You can set the title bar text and color before the dialog is displayed.
When creating a new color (using an existing color object that is not null) you have to
dispose of that color object �rst.

Directory Selection Dialog
The Directory Dialog is an easy way to browse directories.
You can set the Directory Dialog's title bar and starting directory before the dialog is
opened.
A customizable message can also be displayed in the Directory Dialog.

File Open/File Save Dialog
The File Dialog is used for selecting �les for opening or saving.
The type of dialog depends on the style speci�ed at creation.

SWT.OPEN. Open dialog.
SWT.MULTI. Open dialog that can select multiple �les.
SWT.SAVE. Save dialog.

Both the Open and Save dialogs can have �le �lters to restrict the �le types for opening
and saving. Two sets of data are used:

A String array of "�le types."
Microsoft Excel Spreadsheet Files (*.xls)

A String array of �le extensions.
"*.xls"

Note: The list of �le types and the �le extensions must match. If they do not, then the
correct �les will not display according to the �le name.

Font Selection Dialog
The font dialog allows the user to choose from the available fonts.
The user can specify the following:

Font type
Size
Font style (Regular, Bold, Italic, Bold Italic)
Color
Effects (Strikeout, Underline)

CaveSWTDialog
The CaveSWTDialog was created to simplify setting up dialogs and to provide additional built-in
features for CAVE.

Base class for CaveSWTDialog does not require the Eclipse workbench to have started (CAVE does
not have to be running to use). In 99% of cases, do not do not extend this class except for rapid
prototyping or if you have perspective independent standalone components. This extends
CaveSWTDialogBase and allows for perspective dependent dialogs, which requires the workbench
to be running.

Always use this class over CaveSWTDialogBase unless you have a standalone component that uses
dialogs.

Gotchas
Three things to watch out for are:

�. Not disposing of Color, Image, Font (creates memory leaks).
�. Certain widgets do not translate well across multiple platforms like the Scale widget.
�. The hints that are provided to widgets may not work depending on the operating system.

SWT References
Several websites offer help in understanding how to use SWT. They also provide example code
snippets. Here are two helpful links:

http://www.eclipse.org/swt/ (http://www.eclipse.org/swt/). The Eclipse website; provides code
snippets and the Javadoc for the SWT classes.
http://www.java2s.com/Tutorial/Java/0280__SWT/Catalog0280__SWT.%20htm
(http://www.java2s.com/Tutorial/Java/0280__SWT/Catalog0280__SWT.%20htm). Website with
SWT training.

http://www.eclipse.org/swt/
http://www.java2s.com/Tutorial/Java/0280__SWT/Catalog0280__SWT.%20htm

RCP Framework
CAVE is built off the Eclipse RCP framework. Many of the things available in Eclipse are also
available for use in CAVE.

Views
A view is something that can be detached or attached to the CAVE window. It functions similar to a
dialog, the difference being that it can be attached or detached. For an example, see
ProductBrowserView.java in com.raytheon.uf.viz.productbrowser.

Views must extend ViewPart. They must also have an extension point de�ned in the plugin.xml for
that plugin, which is de�ned like the following :

Because a view is much like a dialog, you are able to use all the Standard Widget Toolkit (SWT)
controls inside of it.

Perspectives
A perspective is basically everything that you see. Different perspectives can be made for different
things, as we see in having D2D/GFE/Hydro/Multi-programming Executive (MPE)/Localization, etc.
This includes menus, views, editors, as well as other things. Basic new perspectives can be made as
follows.

See LocalizationPerspective.java and the plugin.xml inside the
com.raytheon.uf.viz.localization.perspective plugin.

Perspective Java classes must implement IPerspectiveFactory. This will force the user to override
createInitialLayout, which then the user can then add views and editors to their liking.

The plugin.xml will need to de�ne the perspective as follows:

Perspectives then need to create a class that extends AbstractVizPerspectiveManager.java. In this
class the perspective will be created and managed. See LocalizationPerspectiveManager.java.
The plugin.xml must also de�ne this as follows:

<extension
 point="org.eclipse.ui.views">
 <view
 allowMultiple="false"
 category="com.raytheon.viz.ui"
 class="com.raytheon.uf.viz.productbrowser.ProductBrowserView"
 id="com.raytheon.uf.viz.productbrowser.ProductBrowserView"
 icon="icons/browser.gif"
 name="Product Browser"
 restorable="true"/>
</extension>

<extension point="org.eclipse.ui.perspectives">
 <perspective
 class="com.raytheon.uf.viz.localization.perspective.LocalizationPerspective"
 id="com.raytheon.uf.viz.ui.LocalizationPerspective" name="Localization"
 icon="icons/localization.gif"
 singleton="true">
 </perspective>
</extension>

Editors
Editors are used to allow users to edit items, �les, or anything really. Editors are tied very tightly with
a perspective, and often tied with Views as well. To create an editor the following needs to be done:

For CAVE editors, see any class that extends AbstractEditor.

Extension Points
Extension points can be used to contribute functionality by plugins that are not included in the
MANIFEST.MF �le. A good example of how extension points work is used in the
com.raytheon.uf.viz.productbrowser plugin. For each plugin that wants to contribute data to this
plugin, something must be added to its plugin.xml �le. This allows for the ProductBrowser plugin
to receive data from the other plugins without actually having a dependency added for the other
plugin.

For example:
com.raytheon.uf.viz.productbrowser

De�nes an extension point on the dataDe�nition.exsd �le.
com.raytheon.viz.radar plugin.xml (for adding radar data to the product browser)

This de�nes that the com.raytheon.uf.viz.productbrowser.dataDe�nition extension point will use
the com.raytheon.viz.radar.RadarProductBrowserDataDe�nition class.
In the Java class, doing the following will recurse all the extensions and get each class that was
de�ned in the individual plugin.xml �les.
ProductBrowserView.java

Because all of these classes extend AbstractProductBrowserDataDe�nition.java, we can use the
same function call and get all the data to populate the product browser tree.
ProductBrowserView.java

<!-- Viz Localization Perspective Manager -->
<extension point="com.raytheon.viz.ui.perspectiveManager">
 <perspectiveManager perspectiveId="com.raytheon.uf.viz.ui.LocalizationPerspective"
 class="com.raytheon.uf.viz.localization.perspective.LocalizationPerspectiveM
anager"
 name="LocalizationPerspectiveManager">
 </perspectiveManager>
</extension>

<extension-point id="dataDefinition" name="dataDefinition" schema="schema/dataDefinitio
n.exsd"/>

<extension
 point="com.raytheon.uf.viz.productbrowser.dataDefinition">
 <dataDefinition
 name="radarProductBrowserDataDefinition"
 class="com.raytheon.viz.radar.RadarProductBrowserDataDefinition" >
 </dataDefinition>
</extension>

IExtensionRegistry registry = Platform.getExtensionRegistry();
IExtensionPoint point = registry
 .getExtensionPoint(ProductBrowserUtils.DATA_DEFINITION_ID);
if (point != null) {
 extensions = point.getExtensions();
} else {
 extensions = new IExtension[0];
}

This will make calls into each individual class for each of the functions call prod.populateInitial() and
return the String for each.

Plugins
Plugins can be added to the RCP application simply by including them in the feature.xml for CAVE,
or by including them in a feature.xml that is included by the AWIPS feature.xml �le.

To create a new plugin, go to File -> New -> Project... -> Plug-in Project. Name the project according
to the correct naming convention, leaving everything else default, and click Finish.

By default, the only thing that is created is an Activator.java class. This class is �rst called when the
plugin is activated or �rst used.

SWT/JFace
Eclipse RCP is based on SWT/JFace components, for which there is more documentation in
CAVE_SWT.odt.

for (IExtension ext : extensions) {
 config = ext.getConfigurationElements();
 for (IConfigurationElement element : config) {
 try {
 AbstractProductBrowserDataDefinition<?> prod = (AbstractProductBrowserDataDe
finition<?>) element
 .createExecutableExtension("class");
 String productName = prod.populateInitial();
 }
 }

Uframe feature.xml
The feature.xml is a �le that allows plugin providers a means to make collections of plugins that
logically go together. In addition to collecting the plugin names together, these names de�ne the
dependencies of the feature project.

com.raytheon.edex.feature.uframe
The com.raytheon.edex.feature.uframe project groups together all of the projects that are
required to build and deploy the EDEX uframe subsystem successfully.

This extract shows the required elements of the �le. Although only a single plugin is referenced
here, com.raytheon.edex.common, the actual number is nearly 300 required plugins. This
highlights another aspect of the feature.xml. By mentioning the plugin in the feature.xml the
Eclipse environment is able to detect missing plugins. This is useful in the development
environment as new plugins are added, Eclipse may issue an error alerting the developer of the
need to import the speci�c project. At build and deployment, the feature is used to ensure that all
required projects are available in the source baseline.

<feature
 id="com.raytheon.edex.feature.uframe"
 label="Uframe Feature"
 version="1.0.0"
 provider-name="RAYTHEON">

 <description url="http://www.example.com/description">
 [Enter Feature Description here.]
 </description>

 <copyright url="http://www.example.com/copyright">
 [Enter Copyright Description here.]
 </copyright>

 <license url="http://www.example.com/license">
 [Enter License Description here.]
 </license>

 <plugin
 id="com.raytheon.edex.common"
 download-size="0"
 install-size="0"
 version="0.0.0"
 unpack="false"/>
</feature >

Logging Con�guration

Con�gured Via XML Files
XML Files for EDEX

log4j.xml
log4j-ingest.xml

Logging Levels
Level Names:

TRACE
DEBUG
INFO
WARN
ERROR
FATAL.

TRACE is lowest level and FATAL is highest level.
A logger set to log at a certain level will log that level and all higher levels. Example: logger set
to WARN level will log all WARN, ERROR, and FATAL messages, but not TRACE, DEBUG, or
INFO levels.
Logging level is inherited from a parent logger.

Additivity
Additivity allows logging statements to be forwarded to all the appenders in that logger as
well as the appenders higher in the hierarchy.
Set to true by default.

Appenders
An appender is an output location. All loggers log to one or more appenders.

Layouts
Appenders use layouts to format the log �le's name and the output
The PatternLayout is standard with the log4j distribution
Uses conversion patterns to format the output.

The conversions patterns are closely related to the print function in C.
Literal text can be inserted within the conversion pattern.

XML Entries Explained
Start by creating appenders. Here is the radar log appender:

Appender
name is RadarLog.
Java class is RollingFileAppender.

RollingPolicy
Determines how the log �les will roll over.

<!-- radar log -->
<appender name="RadarLog" class="org.apache.log4j.rolling.RollingFileAppender">
 <rollingPolicy class="org.apache.log4j.rolling.TimeBasedRollingPolicy">
 <param name="FileNamePattern" value="${edex.home}/logs/edex-${edex.run.mode}-rad
ar-%d{yyyyMMdd}.log"/>
 </rollingPolicy>

 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%-5p %d [%t] %c{1}: %m%n"/>
 </layout>
</appender>

AWIPS II uses the TimeBasedRollingPolicy.
Requires a FileNamePattern option to be set.
The value FileNamePattern should consist of the name of the �le and a %d conversion
speci�er.
Uses Java's SimpleDateFormat.
The %d conversion speci�er determines when the log will roll over.
AWIPS2 log �les roll over daily.

%d{yyyyMMdd}
FileNamePattern value is the path to the log �le and the �le's name.

Layout
Uses the PatternLayout.
The conversion pattern is the format of the output line.
ConversionPattern value above is %-5p %d [%t] %c{1}: %m%n.

%5-p is the log priority left justi�ed at 5 spaces.
%d is the date time stamp in this format: 2011-12-14 17:11:16,509.
[%t] is the name of the thread running surrounded by [].
%c{1} prints the category of the logging event, where the number means to print the
corresponding number of right most components. 1 prints just the rightmost
component.
The colon is just literal text to signify the start of the log text.
%m is the actual message.
%n is a platform dependent line separator character.

Logger
name is the package name to be logged.
Any code inside the com.raytheon package will be logged at level INFO.
The logger com.raytheon.edex.plugin.shef overrides the value set at the com.raytheon level
and uses the DEBUG level logging for log entries inside the com.raytheon.edex.plugin.shef
package.
Add an appender to a logger with the .
If no appender-ref listed the logger will use the default logging.

Logging in the Java Code.
De�ne the status handler:

Call any of the statusHandler.handle() methods to send the message.
Messages go to log �le and AlertViz for noti�cation.
Noti�cations are con�gurable in the Alert Visualization Con�guration dialog.
Additional Info available via the log4j website: http://logging.apache.org/log4j/index.html
(http://logging.apache.org/log4j/index.html)

<logger name="com.raytheon">
 <level value="INFO" />
</logger>

<logger name="com.raytheon.edex.plugin.shef">
 <level value="DEBUG" />
</logger>

private static final transient IUFStatusHandler statusHandler = UFStatus.getHandler(Cla
ssName.class);

http://logging.apache.org/log4j/index.html

AWIPS II deploy-install.xml
To understand what the deploy-install.xml �le is and how to use it, you will need to be familiar
with ant. Ant, an Apache project, is a Java library and command-line tool whose mission is to drive
processes described in build �les as targets and extension points dependent upon each other. The
primary use case of Ant is to build Java applications. Ant supplies a number of built-in tasks
allowing users to compile, assemble, test, and run Java applications.

The AWIPS II deploy-install.xml �le (provided that you have ant installed) will allow you to deploy
EDEX directly from your Eclipse workspace during development provided that you have installed
AWIPS II Standalone software package (installing and con�guring AWIPS II Standalone is outside
the scope of this document).

Within your workspace, the deploy-install.xml �le can be found in the build.edex directory. To run
deploy-install.xml from within Eclipse, right click on the �le and select: Run As -> Ant Build… in the
context menu that is displayed. The "Edit Con�guration" dialog will be displayed. Select the "Main"
tab in the Edit Con�guration dialog and look for the Arguments �eld. There are a few arguments
that you will have to provide before you can use deploy-install; a few are required and others are
optional. One of the required arguments is install.dir; if you are using the standard ADE setup this
argument should always be set to "/awips2/edex": -Dinstall.dir=/awips2/edex. Other arguments
that you can specify include:

-Dupdate.python
-Dlocalization.sites

The update.python argument expects a yes / no value. If you set update.python to "yes", deploy-
install.xml will update the ufpy and dynamicserialize site-packages in your python install. However,
in order for this update to work, you must have the pythonPackages project in your workspace and
the pythonPackages project must have dynamicserialize and ufpy sub-directories. If the
pythonPackages project is not present in your workspace, deploy-install will fail.

The localization.sites argument expects nothing, a single site identi�er or a comma-separated list
of site identi�ers. When a localization site is speci�ed, deploy-install will copy the �les from the
associated localization project in your workspace to your EDEX installation. (WARNING: This will
overwrite any localization �les that are already present for the site.) The localization project(s) for
any site that you speci�ed must be in your workspace; if not, deploy-install will fail.

Once you con�gure deploy-install.xml, you will be able to bypass the con�guration step
completely and immediately run deploy-install by right clicking on the �le in Eclipse and select:
Run As -> Ant Build in the context menu that is displayed. As deploy-install is running, it will log
information in the Eclipse console so that you will be able to determine if deploy-install was
successful or if it failed.

Clustering
This is an EDEX-only concept, implemented via database row locks. All clustering goes through
com.raytheon.uf.edex.database.cluster.ClusterLockUtils. The general conops is to use an easily
identi�able name �eld that is speci�c to your overall �ow and then to use the details column to
specify the unit of work. The unique combination of the name and details provide the speci�c
database row to lock. ClusterLockUtils is used directly to cluster lock speci�c pieces of code, for
example, com.raytheon.edex.plugin.gfe.con�g.GFESiteActivation.java, where the name is
"GFESiteActivation" and task details is "Initialization: OAX". The different lock calls to
ClusterLockUtils allow for customization of other only returning once a lock is granted, the timeout
of when to override a current lock, and overriding of IClusterLockHandler can you give you custom
control of how the extrainfo column is used. The state of locks can be viewed in postgres. It is stored
in the metadata database, awips schema, cluster_task table.

There are clustered camel contexts to emulate singleton services, so an entire set of routes is only
running on a work machine in the cluster based on the context name. The clustered context needs
to be registered with the clustered camel context manager and the context set to not auto-start,
for example, purge-spring.xml.

Note: Changing the extrainfo column of a ClusteredContext to a different host/jvm will cause that
service to switch to the designated jvm at the next sync interval (usually 20 seconds).

There are clusteredquartz endpoints for periodic kickoff of work that can be run on any system, but
the work unit should only happen once (example: gfe-request.xml).

If CAVE ever needed cluster locking, a Thrift request would need to be sent to EDEX to interface
with ClusterLockUtils on the client's behalf.

Request JVM

Thrift Request and Handler API
EDEX supports a request-handler API that allows client applications (like CAVE) to send data that
will be processed by the EDEX server and optionally return results back to the client. Due to its use
of Dynamic Serialize, Java-based and Python-based clients can interact with the server through
this API.

Creating a Request
To create a new request type, create a new class that implements the IServerRequest interface (see
com.raytheon.uf.common.serialization.comm.IServerRequest). Because this class will be sent to
the server via Dynamic Serialize/Thrift, you must also annotate your new class with the Dynamic
Serialize annotations. The class itself should have the @DynamicSerialize annotation and any �elds
of the class that will be needed to process the request should have the
@DynamicSerializeElement annotation. Also, any �elds marked as @DynamicSerializeElement
will need associated getters and setters.

The following sample code demonstrates a very simple request type.

// ASampleRequest.java
@DynamicSerialize
public class ASampleRequest implements IServerRequest {
 @DynamicSerializeElement
 private long userId;

 @DynamicSerializeElement
 private String siteId;

 @DynamicSerializeElement
 private String message;

 public long getUserId() {
 return userId;
 }

 public String getSiteId() {
 return siteId;
 }

 public String getMessage() {
 return message;
 }

 public void setUserId(long userId) {
 this.userId = userId;
 }

 public void setSiteId(String siteId) {
 this.siteId = siteId;
 }

 public void setMessage(String message) {
 this.message = message;
 }
}

Creating a Request Handler
To process requests of your new request type, you will need to do two things:

�. Create a class that implements the IRequestHandler<YourNewRequestType> interface (see
com.raytheon.uf.common.serialization.comm.IRequestHandler).

�. Register your request handler with the request handler registry.

To implement the IRequestHandler interface properly, your new handler class must implement a
method named handleRequest, which accepts your request as the only argument and returns an
Object. This return value does not have to be typed Object because primitives, Strings, and user-
de�ned classes are also acceptable. The only requirement is that the return type supports
serialization via Dynamic Serialize.

The following sample code demonstrates a request handler for the request type from the previous
section.

To register your new handler, you will have to alter the EDEX plugin's spring request XML (this will
be in an XML �le named *-request.xml) �le and add the following:

So, you create a bean for the request handler, then register it with the handlerRegistry, and, by
specifying your request type in constructor argument, tell the server to send all requests of that
type to your handler bean.

Sending the Request with Java from CAVE
In order for the client to send a request, developers should use the ThriftClient class (see
com.raytheon.uf.viz.core.requests.ThriftClient). This will automatically send your request to the
con�gured EDEX server. Just call the static method sendRequest and pass in the request you want
to send, and the server's response will be returned. If the request handler threw an exception while
processing your request, sendRequest will throw this exception back to the caller.

Sending the Request with Python
Since the Request/Handler API communicates using Dynamic Serialize, pure Python clients can
also interact with EDEX using the same request types that Java does. AWIPS II provides a ufpy
Python package, which includes a ThriftClient class for communicating with EDEX. However, any
requests you wish to send through ThriftClient must be converted to pure python classes. Classes

// ASampleRequestHandler.java
public class ASampleRequestHandler
 implements IRequestHandler<ASampleRequest> {
 @Override
 public String handleRequest(ASampleRequest request) {
 StringBuilder retVal = new StringBuilder();
 retVal.append("User ");
 retVal.append(request.getUserId());
 retVal.append(" from site ");
 retVal.append(request.getSiteId());
 retVal.append(" says ");
 retVal.append(request.getMessage());
 return retVal.toString();
 }

<!-- samplePlugin-request.xml -->
<bean id="sampleHandler" class="com.raytheon.edex.plugin.sample.handlers.ASampleRequestH
andler"/>

<bean factory-bean="handlerRegistry" factory-method="register">
 <constructor-arg value="com.raytheon.uf.common.dataplugin.sample.requests.ASampleReq
uest"/>
 <constructor-arg ref="sampleHandler"/>
</bean>

within the dynamicserialize.dstypes Python package have already been converted for use in
baseline tools. Further information on converting Java classes to Python is covered in the
documentation on Dynamic Serialize.

AWIPS II Data Purging
The purging in AWIPS II is based largely on the rule-based purging scheme in use currently by
AWIPS I. Due to some fundamental architecture differences between AWIPS I and AWIPS II, the
AWIPS II data purging model differs in some regards.

Con�guration
By default, the purge routine runs off of a quartz timer once an hour at 30 minutes past the hour.
This value may be changed by modifying the purge.cron entry in the
/awips2/edex/conf/spring/project.properties �le. The purge component is con�gured in the
res/spring/purge-spring.xml �le located in the com.raytheon.uf.edex.purgesrv plugin. This �le
de�nes several beans and camel routes, including the aforementioned quartz timer job, used in the
purge process.

As will be explained later, each plugin is responsible for purging its own data in whatever manner it
chooses. Each plugin is responsible for assigning a data access object (DAO) in their
<plugin_name>-common.xml spring con�guration �le in the <plugin_name>Properties bean. If a
plugin does not specify a custom DAO to use, the default plugin DAO
(com.raytheon.uf.edex.database.plugin.PluginDao) is used. Speci�cally, the purge behavior is
de�ned in two methods on the data access object. These are purgeExpiredData and purgeAllData.
The default plugin DAOs implement the default rule-based purge routine. Plugin-de�ned DAOs
may override these methods to de�ne their own custom purge behavior.

Purge Execution Flow
The quartz timer sends a message to the com.raytheon.uf.edex.purgesrv.PurgeSrv bean de�ned
by spring. The PurgeSrv then retrieves all the registered plugins from the PluginRegistry. A loop
then delegates the purging of data to the plugin by calling the purgeExpiredData method on the
DAO. As mentioned above, plugins may use the default purge routine or de�ne their own.

Default Purge Behavior
If a plugin chooses to use the default purge behavior, the plugin must de�ne rules for how and
what to purge. The plugin should contain a �le called <plugin_name>PurgeRules.xml located in
the utility/common_static/base/purge folder. If a plugin does not de�ne this �le, the default purge
rule will be used to purge their data. The default purge rule is de�ned in defaultPurgeRules.xml
located in the utility/common_static/base/purge folder of the com.raytheon.uf.edex.database
plugin. Currently, the default rule is to purge all data with reference times older than one day based
on the current time.

A purge is identi�ed by an id �eld. The id consists of the plugin name and a purge key. The key �eld
de�nes what �elds in the plugin record class to examine to determine if the data should be purged.
For example, the grib plugin de�nes the following rule:

The key �eld in the id is identi�ed as modelinfo.modelName=ETA. This means that the purger will
examine the modelInfo �eld of GribRecord (the record class assigned to the grib plugin) and
subsequently look at the modelName �eld of the modelInfo �eld to make its purge decision. In this
case, this rule is saying to keep two versions of grib records whose modelInfo.modelName �eld is
ETA. Or, in other words, keep two runs of the ETA grib model.

<rule>
 <id>
 <pluginName>grib</pluginName>
 <key>modelInfo.modelName=ETA</key>
 </id>
 <versionsToKeep>2</versionsToKeep>
</rule>

A plugin may specify a plugin default rule. This rule is used to prevent data that may not get
examined by the de�ned rules from not getting purged. If a plugin does not specify a plugin
default rule, then the global default rule mentioned earlier is used. A plugin default purge rule is
de�ned as follows:

The plugin name is speci�ed as the plugin that this rule applies to. The key is speci�ed as default.
This rule is saying to keep two versions of all data not addressed by other de�ned rules. Taking grib
as an example: Say a new model, or an unknown model, starts to be ingested by EDEX. Obviously,
no rule has been de�ned for this data, but we do not want the data to persist forever and �ll the
disk. The default purge rule kicks in and this data is purged in a reasonable way until a speci�c rule
can be de�ned.

If a plugin, such as grib, de�nes purge rules based on �elds in the class (in the case of grib
modelInfo, modelName) and the plugin stores HDF5 data, then an additional �le must be present
for purge to operate correctly. This �le is called <plugin_name>PathKeys.xml and is located in the
utility/common_static/base/path/ directory of the plugin. This �le is read by the purger to tell it the
�elds on which this plugin is basing its purging. This �le also determines the layout of the HDF5
data in the HDF5 data store. For grib, the contents of the �le are as follows:

The key �eld is the record class �eld to use when persisting HDF5 data. The order is the order in
which these �elds should be appended when determining the HDF5 path. In this case, the
modelInfo.modelName �eld from the GribRecord class is used. Examining the HDF5 directory for
grib shows this:

You can see that the model name is used as the directory name. Expanding that out a little more,
you can observe that the actual HDF5 �les then reside in those directories:

<rule>
 <id>
 <pluginName>grib</pluginName>
 <key>default</key>
 </id>
 <versionsToKeep>2</versionsToKeep>
</rule>

<pathKeySet>
 <pathKey>
 <key>modelInfo.modelName</key>
 <order>0</order>
 </pathKey>
</pathKeySet>

grib
|-- AK-NamDNG5
|-- AK-RTMA
|-- AKWAVE239
|-- AKwave10
|-- AKwave4
|-- AUTOSPE
|-- AVN
|-- AVN203
|-- AVN211
.
.
.

Important Note: A plugin may not use more than one key for de�ning purge rules.

This means that for grib, you cannot have rules with different keys meaning you can have one rule
with key modelInfo.modelName and another rule with key modelInfo.genprocess. This is due to
how the purge routine was designed. Because plugins have wide latitude for de�ning how their
data is persisted, concessions had to be made on what the purge routine was capable of doing The
purger examines the pathKeys.xml �le to determine what to look at in the database. Then, based
on that key, it determines the list of refTimes matching that criteria. As an example, the grib plugin
uses modelInfo.modelName as its key. Therefore, the purger will �rst determine all the unique
modelNames found in the database. Then, it will �nd all of the unique reference times for each of
those modelNames. An example representation of the lists follows:

ETA (2012-03-22-00, 2012-03-22-06, 2012-03-22-12)
ETA218 (2012-03-22-00, 2012-03-22-06)

The purger then uses these lists to determine what data to purge. If multiple keys were allowed,
the purger would potentially be making thousands of queries to the database to determine all the
reference times that apply to those keys and then have to �nd out if multiple rules apply. The logic
has the potential to get extremely complex and more importantly, time consuming. In this case, we
are keeping two versions of the ETA model, meaning that all ETA data with refTime 2012-03-22-00 is
deleted from the database and the HDF5 directory. This also adds ef�ciency to deleting HDF5 data.
Instead of calling many deletes to HDF5 directory to cherry pick speci�c pieces of data from each
�le, which could get very time consuming, entire �les may be deleted. Essentially, the pathKeys �le
makes the HDF5 data get organized in manner that facilitates fast purging.

The default purge routine relies on a plugin using the DefaultPathProvider. If the plugin does not
use this path provider, the purge routine may fail.

Purge Rules
A purge rule may specify the following parameters:

versionsToKeep. The number of versions for this key to keep. Note that a version is a
reference time.
period. Max period between the current time and the oldest time stamp of �les to keep;
defaults to 0 which means do not time purge. The leading tilde (~) on the period means to
calculate from the latest time instead of the current time
delta. Data with a time stamp separated by less than this from the next newest �le will not be
kept. Defaults to zero, which means do not consider time separation. If a leading equals (=),
keep only �les an exact multiple of this delta time, if a leading tilde (~), keep only the one �le
closes to an exact multiple of this delta time.
round. Round times by this before deciding whether to purge. Defaults to zero, which means
do not round. The rounding time interacts with the delta, but not the period. If a leading plus
sign (+), add the time instead of rounding by it. If consecutive data round to the same time,
then if one is kept, they will all be kept.
LogOnly. Do not actually purge by this entry, only log what would have been purged
modeTimeToWait. Time period to wait after the insert time of the latest data to purge
normally; this allows the most recent �le to be completed before the oldest is purged

grib
|-- AK-NamDNG5
| |-- AK-NamDNG5-2012-03-22-06-FH-000.h5
| |-- AK-NamDNG5-2012-03-22-06-FH-003.h5
.
.
.

PluginRegistry
The EDEX PluginRegistry provides a means of setting various property values that are speci�c to
each plugin. These property values are stored in a single object, PluginProperties, which is keyed
using the pluginName. Figure 3-4 provides a class diagram of the relationship.

The PluginProperties class used in PluginRegistry exposes important properties that are used
while creating a plugin at startup as well as providing information that will be used during the
lifetime of the plugin.

Figure 3-4. Plugin Registry

Properties Exposed by PluginProperties
The properties exposed by PluginProperties are:

pluginName. The short name of the project.
pluginFQN. The fully quali�ed name of the project.
Database. The database that should be used.
Record. The fully quali�ed name of the record object to be registered.
dao. The Dao (Data Access Object) that implements store behavior for the record object.
Initialize. An initializer class that performs any initialization required while the plugin is being
registered.
dependencyFQNs
pathProvider. A class that provides a path to the HDF repository for the record object.
Compression. The type of compression to be used on the data.
initialRetentionTime. Use of this property is deprecated.

The values for database, initializer, dao, initialRetentionTime, and pathProvider are set to default
values that are declared in the class PluginPropertyDefaults in the "edex.xml" startup con�guration.

The following properties show some typical values for the properties. The "record" property is
important as the initialization tasks use this record to construct the build table SQL required when
a table is initially created in the database.

Given a sample decoder plugin named mytest the following properties could be set as follows

The properties de�ned are then registered with the pluginRegistry and any initialization actions
occur at this time.

Plugin Startup
Figure 3-5 shows both the system initialization and the plugin initialization involved with
PluginRegistration. At startup the edex.xml con�guration �le begins by creating a set of default
plugin properties. These properties are later used to populate initial properties in the
PluginProperties constructor as each new plugin is de�ned. When values for certain properties are
not explicitly speci�ed by a plugin, these defaults ensure that important properties always have
meaningful values.

<bean id="mytestPluginName" class="java.lang.String" >
 <constructor-arg type="java.lang.String" value="mytest" />
</bean>

<bean id="mytestProperties" class="com.raytheon.uf.common.dataplugin.PluginProperties" >
 <property name="pluginName" ref="mytestPluginName" />
 <property name="pluginFQN" value="com.raytheon.uf.common.dataplugin.mytest" />
 <property name="dao" value="com.raytheon.uf.common.dataplugin.mytest.dao.MyTestDao"
/>
 <property name="record" value="com.raytheon.uf.common.dataplugin.mytest.MyTestRecor
d" />
</bean>

<bean factory-bean=="pluginRegistry" factory-method="register" >
 <constructor-arg ref="mytestPluginName" />
 <constructor-arg ref="mytestProperties" />
</bean>

Figure 3-5. Plugin Startup: System Initialization and Plugin Initialization
The edex.xml next creates callback classes that will later use speci�ed plugin properties to perform
additional initialization as follows.

�. The schemaManager bean is created, followed by the dbPluginRegistry. This
schemaManager is then added to the dbPluginManager as a listener for registryChanged
events in the dbPluginRegistry.

�. The dbPluginRegistry is in turn added as a registryChanged listener on pluginRegistry after
it has been created.

�. Other registryChanged listeners may be added to either the dbPluginRegistry or
pluginRegistry in a similar fashion.

�. Later, as plugins are de�ned and registered with the pluginRegistry, the pluginAdded
method on any listeners in the pluginRegistry are called. For the above example:

A plugin is de�ned and registered with the pluginRegistry.
The pluginRegistry then calls the pluginAdded method on the dbPluginRegistry.
The dbPluginRegistry performs its tasks then calls the pluginAdded method on the
schemaManager.
The schemaManager uses information in the pluginProperties to perform various
database speci�c actions during startup. Most common would be creating the DDL for
the table for initial creation and then creating that table if it does not exist.

The following extract is typical of the de�nitions for the items mentioned above.

<!-- Create the default properties →
<bean id="pluginDefaults"
 class="com.raytheon.uf.common.dataplugin.defaults.PluginPropertyDefaults">
 <property name="database" value="metadata" />
 <property name="initializer" value="com.raytheon.edex.plugin.DefaultPluginInitialize
r" />
 <property name="dao" value="com.raytheon.edex.db.dao.DefaultPluginDao" />
 <property name="initialRetentionTime" value="24" />
 <property name="pathProvider" ref="defaultPathProvider"/>
</bean>
<bean id="pluginRegistry"
 class="com.raytheon.uf.edex.core.dataplugin.PluginRegistry"
 factory-method="getInstance"/>
<bean id="dbPluginRegistry"
 class="com.raytheon.uf.edex.database.DatabasePluginRegistry"
 factory-method="getInstance"/>

<!-- schemaManager initializes database tables db plugin is registered -->
<bean id="schemaManager" class="com.raytheon.edex.db.purge.SchemaManager"
 factory-method="getInstance" />
<!-- Add the schemaManager as a listener on the dbPluginRegistry -->
<bean factory-bean="dbPluginRegistry" factory-method="addListener">
 <constructor-arg><ref bean="schemaManager"/></constructor-arg>
</bean>
<!-- This causes the data plugin's database tables to be created when a plugin is regist
ered -->
<bean id="dbPluginRegistryListenerAdded" factory-bean="pluginRegistry"
 factory-method="addListener">
 <constructor-arg><ref bean="dbPluginRegistry"/></constructor-arg>
</bean>
<!-- Runs the data plugin's initializer when a plugin is registered -->
<bean id="pluginSetup" class="com.raytheon.edex.plugin.PluginInitialSetup" />
<!-- Note the "depends-on" reference requires that the bean "dbPluginRegistryListenerAd
ded" be defined prior to this bean being created. -->
<bean factory-bean="pluginRegistry" factory-method="addListener"
 depends-on="dbPluginRegistryListenerAdded">
 <constructor-arg><ref bean="pluginSetup"/></constructor-arg>
</bean>

EDEX Decoder Plugins

Generic Decoder
EDEX decoders provide the capability of transforming incoming data, coded or not, into a canonical
data form that is later persisted to a data store. By providing the data in a canonical form, only a
single data access object needs to be provided to retrieve these data. The decoders within the
ingest component may receive data from outside sources, coded weather data for example, or as
the output of other decoders to be transformed into a different format.

A simple implementation of a decoder is a class that exposes an "action" method that will be called
by the "camel" subsystem. When designing such a class some of the following rules and
conventions must be observed.

The camel Spring "wiring" XML allow the developer to expose the decoder action method to camel.
The following is a snippet from a con�guration XML of a typical decoder.

The bean name mytestDecoder is the decoder's name reference. This will be used when a
reference to the bean is required. The "class" argument indicates that class that will be created, and
"depends" on indicates that mytestPluginName must be de�ned before this bean will be created.
Note that when the bean is created and used, there is a single instance. The above "bean" de�nition
would use the following java code:

Note that the only correspondence between the "bean" constructor argument and the Java code is
that the constructor parameter takes a single argument of type String. Camel uses re�ection to
determine the correct constructor to be called.

It is important to recognize that a single instance of the class is created. That means that any
attributes of the class are common to an invocation of the bean methods. Any data that is declared
within a method is visible to that method only, however any data declared at the class level is
visible to any invocation of any method. So it is best to ensure that thread safety is a high design
priority.

The following reference actually uses the de�ned bean and indicates that the method "decode" will
be invoked as the action method of the class. Note in particular that there are no arguments to the
method. Camel uses re�ection to examine the decoder's decode method and determine how to
transform the incoming data if that is possible.

As an example, given the above XML, the "bean" stringToFile converts a byte array or String to a File
reference given the assumption that the byte array/String represents a fully quali�ed �le name.
Then Camel examines the bean mytestDecoder's decode method to determine what parameter(s)
it may take. The following code outlines some possible variations:

The �le reference created by stringToFile is passed unchanged.

<bean id="mytestDecoder"
 class="com.raytheon.uf.edex.plugin.mytest.MyTestDecoder"
 depends-on="mytestPluginName">
 <constructor-arg ref="mytestPluginName" />
</bean>

public MyTestDecoder(String name) {
 pluginName = name;
}

<bean ref="stringToFile" />
<bean ref="mytestDecoder" method="decode" />

public PluginDataObject [] decode(File file)

public PluginDataObject [] decode(byte[] data)

The contents of the �le reference are �rst read into a byte array and this is then passed to the
decode method.

The contents of the �le reference are �rst read and converted to a String and this String is
passed to the decode method.

The �rst method, a direct File reference, is useful when dealing with large �les. This allows the
decoder to keep a minimum of data in memory at a time. The developer should keep in mind that
the �le being referred to should not be deleted or modi�ed as it may be used by other clients not
known to the developer.

Using the second method, the entire contents of the �le are read as a byte []. This is useful for
smaller data �les as the developer has the data readily available and has no concern regarding �le
manipulation. Like the �rst method, this allows the developer access to the raw data. However,
unlike the �rst method, the developer does not have access to the underlying �le reference.

The third method makes the assumption that the underlying data is of a String type. Although
useful, this method must be used with care. The Java runtime uses certain encoding to transform
raw data into a String. If any data within the raw data does not map correctly then, the result will
not be accurate or even rendered unusable.

The action method "decode" declares a return type of an array of PluginDataObject. The return
value should be a not-null reference with zero or more entries. Returning zero entries allows the
data to be processed fully by "downstream" processes as empty is valid. The not-null array keeps an
exception from being thrown if a downstream process is expecting an array of PluginDataObject.

The strategy design pattern is commonly used with designing decoder classes. Figure 3-2
illustrates a situation where several parser classes may be used depending on the type of the data.

Figure 3-2. Parser Classes
Implementing the parsing services behind the ParserInterface decouples the Decoder "frontend"
from the actual parser implementation. This makes software maintenance easier as the Camel
interfaces need little or no changes when changes occur within the Parser class. This division of
labor also allows the Parser to be tested in a stand-alone mode.

Figure 3-3 shows the sequence of events that are typical during the lifetime of a decoder class. At
startup camel creates a bean instance of the decoder. At that point the decoder instance should be
ready to begin receiving messages via its exposed "action" methods.

public PluginDataObject [] decode(String data)

Figure 3-3. Typical Sequence of Events During Lifetime of a Decoder Class
Between Startup and Shutdown a simple sequence occurs. Data, from some source, is received by
camel and, after being identi�ed as data to be processed by the mytestDecoder, is routed to the
this decoder. The "bean" mytestDecoder has identi�ed decode as its action method, which is called
with the incoming data. For each new data message a new Parser object is created, its parse
method is then called to decode the data fully and return an array of PluginDataObjects
representing the decoded data. This is then returned to camel to be processed further
downstream. Note that because of the way this occurs, the decoder should make no assumptions
about how the data is to be used by downstream consumers. The data object representing the
decoded data should be the only output of the decoder.

Camel-Spring Con�guration xml
Normally the Spring con�guration is split into two sections. The �rst, named "plugin"-common.xml,
usually contains information that should be "available" prior to the plugin speci�c information
being de�ned. The following shows a simple, yet complete de�nition for the "mytest" plugin.

The XML attributes in the <beans...> tag is always required and identi�es camel XML namespace
information. </beans...>

The �rst bean of interest is "mytestPluginName." This bean is identi�ed by name
"id="mytestPluginName", the class that represents the value class="java.lang.String". The value that
will be assigned to the bean is set using a "constructor-arg", that is, "constructor argument", which
identi�es the argument type and value. Once this bean is created it is commonly used by using the
form ref="name", where name is the id associated with the bean. This is de�ned so that all
references for pluginName are the same.

The second bean sets up some important properties associated with the plugin.
pluginName. The "short" name of this plugin. Normally the pluginName bean reference.
pluginFQN. The fully quali�ed name of the data plugin.
Record. This is the fully quali�ed name of the Data Record that will be used to return data
from this decoder.

The third bean registers the above properties with the pluginRegistry. This registry makes the
de�ned property information available to other services using the pluginName as a key.

Once these items have been declared the plugin has been identi�ed to the system.

The second con�guration section, named "plugin"-ingest.xml usually contains information that tells
camel how this plugin handles data being received by the ingest system. In the following the
<beans...> preamble is not shown. </beans...>

<beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:amq="http://activemq.apache.org/schema/core" xmlns:xsi="http://www.w3.org/200
1/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://activemq.apache.org/schema/core http://activemq.apache.org/schema/core/ac
tivemq-core.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/came
l-spring.xsd">

 <bean id="mytestPluginName" class="java.lang.String">
 <constructor-arg type="java.lang.String" value="mytest" />
 </bean>

 <bean id="mytestProperties" class="com.raytheon.uf.common.dataplugin.PluginPropertie
s">
 <property name="pluginName" ref="mytestPluginName" />
 <property name="pluginFQN" value="com.raytheon.uf.common.dataplugin.mytest" />
 <property name="record" value="com.raytheon.uf.common.dataplugin.mytest.MyTestRe
cord" />
 </bean>

 <bean id="mytestRegistered" factory-bean="pluginRegistry" factory-method="register">
 <constructor-arg ref="mytestPluginName"/>
 <constructor-arg ref="mytestProperties"/>
 </bean>

</beans>

The �rst bean, "mytestDecoder," de�nes the decoder bean, its implementing class, and in this case
a constructor argument referencing the pluginName.

As noted previously, this creates a single instance of the class that will be used when referenced.
Note that this bean also contains the attribute

This ensures that all beans in "mytest"-common.xml have been de�ned prior to this bean being
created.
The second bean, "mytestDistRegistry," registers information about this plugin with the distribution
service. In this case the pluginName and a message service queue are registered. This tells the
distribution service that when data for the named plugin is received, that data should be placed on
the speci�ed queue so that the data may be routed to the plugin. Generically an "endpoint" is
being de�ned which may be written to or read from.

The �rst bean of interest is "mytestPluginName." This bean is identi�ed by name
"id="mytestPluginName", the class that represents the value class="java.lang.String". The value that
will be assigned to the bean is set using a "constructor-arg", that is, "constructor argument", which

<bean id="mytestDecoder" class="com.raytheon.uf.edex.plugin.mytest.MyTestDecoder"
 depends-on="mytestPluginName">
 <constructor-arg ref="mytestPluginName" />
</bean>

<bean id="mytestDistRegistry" factory-bean="distributionSrv" factory-method="register">
 <constructor-arg ref="mytestPluginName" />
 <constructor-arg value="jms-dist:queue:Ingest.mytest?destinationResolver=#qpidDurabl
eResolver" />
</bean>

<bean id="mytestCamelRegistered" factory-bean="contextManager"
 factory-method="register"
 depends-on="persistCamelRegistered">
 <constructor-arg ref="mytest-camel" />
</bean>

<camelContext id="mytest-camel" xmlns="http://camel.apache.org/schema/spring"
 errorHandlerRef="errorHandler" autoStartup="false">
 <!-- Begin mytest routes -->
 <route id="mytestIngestRoute">
 <from uri="jms-generic:queue:Ingest.mytest?destinationResolver=#qpidDurableResol
ver" />
 <setHeader headerName="pluginName">
 <constant>mytest</constant>
 </setHeader>
 <doTry>
 <pipeline>
 <bean ref="stringToFile" />
 <bean ref="mytestDecoder" method="decode" />
 <to uri="directvm:indexAlert" />
 </pipeline>
 <doCatch>
 <exception>java.lang.Throwable</exception>
 <to uri="log:mytest?level=ERROR&showBody=false&showCaughtExcepti
on=true&showStackTrace=true" />
 </doCatch>
 </doTry>
 </route>

</camelContext>

depends-on="mytestPluginName"

identi�es the argument type and value. Once this bean is created it is commonly used by using the
form ref="name", where name is the id associated with the bean. This is de�ned so that all
references for pluginName are the same.

The �rst item in the route "mytestIngestRoute" declares the "from" endpoint, that is, where the
message comes from. In this case the "jms" queue endpoint is referenced.

Next, the message header is modi�ed to add a property "pluginName" with the value "mytest." This
property will serve to identify where the processing was performed for later use. Next, a "doTry"
section is declared. This is set so that any errors that occur will be caught (by the doCatch tag) and
appropriate action can be taken, writing an error message to the log �le in this example.

The actions contained with the "pipeline" tag are then executed serially. The �rst "stringToFile" and
the second "mytestDecoder" have been described. The third tag - "to" - sends the resulting
message to the endpoint "directvm:indexAlert" for further processing.

A note of warning. The data placed in the body of the message is not checked and is presupposed
to be correct. If the "decoder" bean were to return an array of String instead of PluginDataObject,
no error would occur within this context. The error would occur, however, in downstream
processing where camel �nds bean method expecting an array of PluginDataObjects and is
instead presented with an array of String. An exception would be thrown, indicating that a suitable
conversion could not be made.

EDEX Data Routing

indexAlert Route
The "indexAlert" route is used as a possible destination for decoded data that needs to be stored to
a database table. Speci�cally, this route exists to persist data to the "metadata" data base and to
place alerts for that data on the noti�cation queue. The processing for indexAlert takes place as
follows.

When a decoder process has completed its decode, any resulting data is placed on the indexAlert
queue. The indexAlert route receives data from that queue and passes it through the set of
processing steps as shown in Figure 3-1.

Figure 3-1. indexAlert Route

Thread Pools - Usage of Generic Decoder
Thread pooling in the EDEX system is derived from the Spring concurrent scheduling architecture,
which is in turn built on the Java Concurrency API. See the following documentation.

Spring Concurrent Scheduling Framework Documentation
(http://static.springsource.org/spring/docs/2.0.x/api/index.html?overview-tree.html).
Java Concurrency API Documentation (http://docs.oracle.com/javase/6/docs/api/index.html?
java/util/concurrent/package-summary.html).

Threading allows various program execution units in the EDEX system to share time on the
processors. How that sharing takes place is "hidden" by the API with the assumption that the API
can best decide how to allocate resources to multiple tasks.

ThreadPools are de�ned within the Spring xml con�guration �les in the following manner.

In this example we set up a thread pool with given properties. By setting "core" and "max" PoolSize
to the same value we indicate that this is the maximum number of threads that will be created for
this pool. This threadPool is then set as a property on the JMS component for the plugin as follows

Here the thread pool is injected into the plugin JMS Component as a custom executor for
consuming messages from either queues or topics. Any data arriving on the component will be
executed on the thread. The named JmsComponent is later used to create speci�c JMS inbound
routes for data arriving at the plugin.
The primary purpose for this threading environment is to allow individual logging for various plugin
components. Also it allows a separation of processing code. The Standard Hydrometeorology
Exchange (SHEF) decoder, for example, writes its data to its own database. By using threading, this
processing is kept separate from other decoders. Note that to keep the processing on the same
processor, and thread of execution, subsequent endpoints must use the "directvm" endpoint.

To use the separate logging feature, an appender for the plugin is created. This appender is then
associated with the speci�c thread pool. These actions are speci�c to the system Log4j
con�guration.

<bean id="mytestThreadPool" class="com.raytheon.uf.edex.esb.camel.JmsThreadPoolTaskExec
utor" >
 <property name="corePoolSize" value="3"/>
 <property name="maxPoolSize" value="3"/>
</bean>

<bean id="jms-mytest" class="org.apache.camel.component.jms.JmsComponent" >
 <constructor-arg ref="jmsIngestMyTestConfig"/>
 <property name="taskExecutor" ref="mytestThreadPool"/>
</bean>

<appender name="MyTestLog"
 <!-- define appender -->
</appender>

<appender name="ThreadBasedLog" class="com.raytheon.uf.edex.log.ThreadBasedAppender">
 <param name="ThreadPatterns" value="...;MyTestLog:mytestThreadPool .*;..."/>
 <!-- Other definition itemsr -->
 <appender-ref ref="MyTestLog"/>
</appender

http://static.springsource.org/spring/docs/2.0.x/api/index.html?overview-tree.html
http://docs.oracle.com/javase/6/docs/api/index.html?java/util/concurrent/package-summary.html

Camel EDEX Adapters

Important Camel-EDEX Classes
The purpose of these classes is to provide some common utility functions that are used when
processing data within the Camel ESB. In addition, several of these classes de�ne an adapter layer
that decouples EDEX from the underlying Camel infrastructure.

The Exchange interface de�nes a container that is used to transfer data between various Camel
components.

DataUriAggregator
Method: addDataUris
Input: Array of String - An array of URIs to add to the collection.
Output: void

Add one or more URIs to the internal collection of URIs.

Method: hasUris
Input: Object - Not used.
Output: boolean

Does the aggregation contain any URIs?

Method: sendQueuedUris
Output: DataURINoti�cationMessage

Create a message containing the aggregated URIs.

Method: sendPracticeQueuedUris
Output: PracticeDataURINoti�cationMessage

Create a practice message containing the aggregated URIs.

FileToBytesConverter
Method: toByteArray
Input: File
Output: Array of byte

Read an entire array of byte from a speci�ed File reference.

FileToString
Method: process
Input: Exchange
Output: void

Copy an incoming �le from its location into the edex ".. /data/processing" directory structure. The
FileToString class assumes that the incoming message contains a Java File reference to some
existing �le on the �le system. The process method creates the new path in the "processing"
structure if necessary, then performs a binary copy operation of the contents of the �le. When the
copy is complete the original �le is deleted from the �le system. The dequeueTime message
property is set to the current system time in milliseconds. This time is used to provide timing
instrumentation.

MessageProducer
Method: sendAsync
Input:

String - endpoint - Name of the endpoint to receive the object.

Object - message - The object to send.
Output: void

Method: sendSync
Input:

String - endpoint - Name of the endpoint to receive the object.
Object - message - The object to send.

Output: void

Method: sendAsyncUri
Input:

String - uri - The URI of the endpoint to receive the object.
Object - message - The object to send.

Output: void

Allow objects to be sent to Camel endpoints programmatically. The two send methods, sendASync
and sendSync, send a message to the endpoint. The sendSync will expect a reply from the
endpoint, whereas the sendASync is "�re and forget." The sendAsyncURI sends to an endpoint URI
instead of a named endpoint.

NotifySeparator
Method: separate
Input:

String - header - derived from the message header property.
Long - queueTime - derived from the message enqueueTime property.
String - body - derived from the message body.

Output: List<Message>

Assumes that "header" is a concatenated list of noti�cations and that body is a concatenated list of
locations. The separate method splits the concatenated lists and creates a list of Camel Messages,
one for each member of the lists.

ProcessUtil
Method: delete
Input: String - derived from the "ingestFileName" message header property.
Output: void

Delete the �le referenced by the ingestFileName.

Method: delete
Input: File - A �le reference to delete.
Output: void

Delete the speci�ed �le.

Method: log
Input: Map - derived from the message headers. Contains various properties that are
collected during processing.
Output: void

Log information derived from various header properties that may have been set during processing.
Used to generate timing statistics.

Method: iterate
Input: Array of PluginDataObject
Output: Iterator An iterator to the array.

Convenience method to return an iterator to an array of PluginDataObjects. Normally used within
Camel "wiring" to get items one at a time.

SetIngestHeaderFields
Method: process
Input: Exchange - The message container used for transport data.
Output: void

On entry to the process method the dequeueTime message property is set to the current system
time in milliseconds. This time is used to provide timing instrumentation. The body of the message,
assumed to be a String, is read and used to create a File reference. The resulting File is checked to
see if it exists on the �le system. On success the "ingestFileName" property to the fully quali�ed
path name of the �le. If the �le does not exist an error log message is posted and the fault �ag on
the outgoing message is set to true.

StringToFile
Method: process
Input: Exchange
Output: void

The StringToFile class assumes that the incoming message contains either an array of byte or a
String as its payload. In the case of a byte array it is further assumed that this data represents a
String. The String object should be a fully quali�ed �le path to some �le of interest. A Java File
object is created using the resulting String data and this File is then tested to determine if it exists.
If it does exist, the body of the Exchange message is set to the File object. In addition, the following
message properties are set.

"ingestFileName" is set to the name of the File object created.
dequeueTime is set to the current system time in milliseconds. This time is used to provide
timing instrumentation.
If the �le represented by the input String was not found an error is logged and the fault �ag
on the outgoing message is set to true.

ToDataURI
Method: toDataURI
Input: Array of PluginDataObject
Output: Array of String

The ToDataURI class converts an array of PluginDataObject and converts these to their DataURI.
This function is primarily used as a step prior to noti�cation. The noti�cation subsystem noti�es
interested subscribers of new data by broadcasting the datauri only.

UUIDGenerator
Method: generateUUID
Output: String

Generates a random Universally Unique IDenti�er (UUID) and returns the String representation of
that identi�er.

EDEX Camel Spring
EDEX is built upon the Apache Camel framework and is con�gured through the use of Spring XML
�les. Plugins contribute their Spring XML �les inside the plugin in the res/spring folder.

EDEX Modes
Each EDEX instance can selectively start different services and plugins through the use of a
command line argument to start.sh that designates the edex mode.

There are currently four supported EDEX modes, and each server starts all four, resulting in four
distinct JVMs.

�. request. Serves http for CAVE and other clients.
�. ingest. Processes most of the backend work, including ingesting and storing most data

types.
�. ingestGrib. Decodes and stores grib data that is received. This was separated from the ingest

JVM to free up memory for the other ingest process.
�. ingestDat. Calculates and stores data types for the DAT plugins, such as FFMP and Scan.

Too many JVMs can result in the server going into memory swap. However, splitting the
functionality into separate JVMs can improve ef�ciency and how much is affected by a failover
scenario.

The services that are started with each mode are determined by the modes.xml �le. As an example,
here is the entry for the request mode.

When you start edex with start.sh request, edex scans all available plugins for �les under the
res/spring folder. Then, any of those �les that match the regular expressions of <include> tags and
do not match the regular expressions of <exclude> tags will be loaded.

Spring XML Files
To understand how EDEX uses Spring, it is helpful to understand some of Spring itself. For
documentation on Spring, please see
http://static.springsource.org/spring/docs/2.5.x/reference/index.html
(http://static.springsource.org/spring/docs/2.5.x/reference/index.html).

An EDEX Spring XML �le must always start and end with the <beans> tag that de�nes where the
schemas are located. EDEX typically uses the Spring schema and the Camel schema.

Within the beans tag, plugins typically instantiate beans that will be used in service routes and
register with speci�c services. For some examples:

This XML tag instantiates the class SatelliteNotifyTransform and identi�es it for later use as
satNotifyTransform.

<mode name="request">
 <include>.*request.*</include>
 <include>.*common.*</include>
</mode>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">

<bean id="satNotifyTransform"
 class="com.raytheon.edex.plugin.satellite.notify.SatelliteNotifyTransform" />

http://static.springsource.org/spring/docs/2.5.x/reference/index.html

This XML tag calls PluginRegistry.register(grib, gribProperties), and it will not be called until the
levelRegistered bean and gribProperties bean are created. Since gribProperties is passed into this
call, it will be created before this call. levelRegistered is not passed into the method, but the
developer determined it was necessary to occur before gribRegistered, hence the use of the
depends-on attribute.

The camel contexts are the services of EDEX. Contexts consist of one or more routes.

Routes consist of a from uri, processing in the middle, and then a to uri. To understand speci�c
options for a route, you should consult the Camel documentation at http://camel.apache.org/
(http://camel.apache.org/). In the above example, messages are pulled from the vm:satNotify
queue, they are sent through the previously instantiated satNotifyTransform's
transformToMessages method, then passed to serializationUtil.transformToThrift(), and �nally are
sent out through JMS to another queue.

Multiple routes can be chained together with the use of from and to uri's. As an example, all
incoming data gets routed to the distribution service, then routed to the individual plugin's
decoding service, then the persist service, then the index service, and �nally the notify service. So
when a developer goes to add a new data type, they only have to hook in the decoding service into
the appropriate spot in the chain and the rest will work automatically.

<bean id="gribRegistered" factory-bean="pluginRegistry" factory-method="register"
 depends-on="levelRegistered">
 <constructor-arg value="grib"/>
 <constructor-arg ref="gribProperties"/>
</bean>

<camelContext id="sat-camel"
 xmlns="http://camel.apache.org/schema/spring"
 errorHandlerRef="errorHandler"
 autoStartup="false">

<route id="satNotification">
 <from uri="vm:satNotify" />
 <bean ref="satNotifyTransform" method="transformToMessages" />
 <bean ref="serializationUtil" method="transformToThrift" />
 <to uri="jms-generic:queue:satNotification" />
</route>

http://camel.apache.org/

Data Access Framework
The Data Access Framework allows developers to retrieve different types of data without having
dependencies on those types of data. It provides a single, uni�ed data type that can be customized
by individual implementing plugins to provide full functionality pertinent to each data type.

Writing a New Factory
Factories will most often be written in a dataplugin, but should always be written in a common
plugin. This will allow for clean dependencies from both CAVE and EDEX.

A new plugin's data access class must implement IDataFactory. For ease of use, abstract classes
have been created to combine similar methods. Data factories do not have to implement both
types of data (grid and geometry). They can if they choose, but if they choose not to, they should do
the following :

This lets the code know that grid type is not supported for this data factory.
Depending on where the data is coming from, helpers have been written to make writing a new
data type factory easier. For example, PluginDataObjects can use AbstractDataPluginFactory as a
start and not have to create everything from scratch.

Each data type is allowed to implement retrieval in any manner that is felt necessary. The power of
the framework means that the code retrieving data does not have to know anything of the
underlying retrieval methods, only that it is getting data in a certain manner. To see some
examples of ways to retrieve data, reference SatelliteGridFactory and RadarGridFactory.

Methods required for implementation :
public DataTime[] getAvailableTimes(IDataRequest request) - This method returns an array
of DataTime objects corresponding to what times are available for the data being retrieved,
based on the parameters and identi�ers being passed in.
public DataTime[] getAvailableTimes(IDataRequest request, BinOffset binOffset) - This
method returns available times as above, only with a bin offset applied.
Note: Both of the preceding methods can throw TimeAgnosticDataException exceptions if
times do not apply to the data type.
public IGridData[] getGridData(IDataRequest request, DataTime... times) - This method
returns IGridData objects (an array) based on the request and times to request for. There can
be multiple times or a single time.
public IGridData[] getGridData(IDataRequest request, TimeRange range) - Similar to the
preceding method, this returns IGridData objects based on a range of times.
public IGeometryData[] getGeometryData(IDataRequest request, DataTime times) - This
method returns IGeometryData objects based on a request and times.
public IGeometryData[] getGeometryData(IDataRequest request, TimeRange range) -
Like the preceding method, this method returns IGeometryData objects based on a range of
times.
public String[] getAvailableLocationNames(IDataRequest request) - This method returns
location names that match the request. If this does not apply to the data type, an
IncompatibleRequestException should be thrown.

Registering the Factory with the Framework
The following needs to be added in a spring �le in the plugin that contains the new factory:

throw new UnsupportedOutputTypeException(request.getDatatype(), "grid");

This takes the RadarGridFactory and registers it with the registry and allows it to be used any time
the code makes a request for the data type "radar."

Retrieving Data Using the Factory
For ease of use and more diverse use, there are multiple interfaces into the Data Access Layer.
Currently, there is a Python implementation and a Java implementation, which have very similar
method calls and work in a similar manner. The Java implementation is primarily for use by CAVE.
 Local applications should use the Python interface. Plugins that want to use the data access
framework to retrieve data should include com.raytheon.uf.common.dataaccess as a Required
Bundle in their MANIFEST.MF.

To retrieve data using the Python interface :

To retrieve data using the Java interface :

newDataRequest() - This creates a new data request. Most often this is a DefaultDataRequest, but
saves for future implentations as well.

<bean id="radarGridFactory" class="com.raytheon.uf.common.dataplugin.radar.dataaccess.R
adarGridFactory" />

<bean factory-bean="dataAccessRegistry" factory-method="register">

 <constructor-arg value="radar"/>

 <constructor-arg ref="radarGridFactory"/>

</bean>

from ufpy.dataaccess import DataAccessLayer

req = DataAccessLayer.newDataRequest()

req.setDatatype("grid")

req.setParameters("T")

req.setLevels("2FHAG")

req.addIdentifier("info.datasetId", "GFS212")

times = DataAccessLayer.getAvailableTimes(req)

data = DataAccessLayer.getGridData(req, times)

IDataRequest req = DataAccessLayer.newDataRequest();

req.setDatatype("grid");

req.setParameters("T");

req.setLevels("2FHAG");

req.addIdentifier("info.datasetId", "GFS212");

DataTime[] times = DataAccessLayer.getAvailableTimes(req)

IData data = DataAccessLayer.getGridData(req, times);

setDatatype(String) - This is the data type being retrieved. This can be found as the value that is
registered when creating the new factory (See Registering the Factory with the Framework above
[radar in that case]).

setParameters(String...) - This can differ depending on data type. It is most often used as a main
difference between products.

setLevels(String...) - This is often used to identify the same products on different mathematical
angles, heights, levels, etc.

addIdenti�er(String, String) - This differs based on data type, but is often used for more �ne-tuned
querying.

Both methods return a similar set of data and can be manipulated by their respective languages.
See DataAccessLayer.py and DataAccessLayer.java for more methods that can be called to retrieve
data and different parts of the data.

Because each data type has different parameters, levels, and identi�ers, it is best to see the actual
data type for the available options. If it is undocumented, then the best way to identify what
parameters are to be used is to reference the code.

Python Job Coordinator
The PythonJobCoordinator allows developers to easily create thread pools to execute Python code
on separate threads. Jobs can be run either asynchronously (in which a listener is �red when the
job is done) or synchronously (in which the calling code waits for the job to �nish before moving
on). Jobs will be queued as necessary, so if a pool of three is allocated and �ve jobs are queued,
three will run simultaneously, with two running after those �nish (in an order). Code can allocate as
many or as few threads as desired, although starting with a single thread is recommended.

The following code is necessary to execute an existing PythonInterpreter class using this
functionality. Implementation of PythonInterpreter is not demonstrated by the following code. For
a basic example, look in the com.raytheon.viz.gfe.query package in the com.raytheon.viz.gfe plugin.

QueryScript.java. This class is the interface to the Python interpreter. It creates the Jep
instance, and has an execute method that will be called to run your Python code. This class
will be executed on a thread from the thread pool, and has any functionality that is necessary
while integrating with Python. This should be a subclass of PythonInterpreter or
PythonScript.
QueryScriptExecutor.java. This class will be instantiated every time a user wants to call a
method on QueryScript. Arguments should be added to the constructor of this class that are
necessary to be used in the QueryScript itself. The execute method takes the QueryScript and
runs any method on it. In this case, there is only a single executor, but it is possible to have
multiple Executor classes to do different things on the same PythonInterpreter class. The
Executor classes must implement IPythonExecutor<I, O> where I is the QueryScript class and
O is what the user expects back from the method being called.
QueryScriptFactory.java. This class instantiates the QueryScript itself. The constructor should
take anything necessary to know about in the QueryScript itself, and needs to de�ne the
name of the thread pool and how many threads should be allocated. These threads do not go
away, and are only used for this procedure, so this needs to be taken into account when
thinking of the number of threads. The createPythonScript() method builds a new
PythonInterpreter that does not go away.

To get the following to run:
�. The �rst thing to do is to declare a new factory. This only needs to be done once, so it should

only be constructed in a place that gets called once (for example, constructor).

�. The PythonJobCoordinator now needs to create a new thread pool from that factory, and this
should be stored off. If this is not possible, there is a getInstance() method by the name that is
given in the factory.

OR

�. Now, we need to declare new Executors, create a listener (if desired), and submit them to the
coordinator.

AbstractPythonScriptFactory<QueryScript> factory = new QueryScriptFactory(dataManager);

PythonJobCoordinator coordinator = PythonJobCoordinator.newInstance(factory);

PythonJobCoodinator coordinator = PythonJobCoordinator.getInstance("factoryname");

OR

In the �rst case, we are going to continue on with everything and the listener will get
�red depending on whether it failed (jobFailed) or worked (jobFinished).
In the second case, the code waits until the QueryScript job is done.
The �rst case is the desired and recommended approach, as nothing will lock up when
that is called.

IPythonExecutor<QueryScript,ReferenceData> executor = new QueryScriptExecutor("evaluat
e", argMap);

IPythonJobListener<ReferenceData> listener = new IPythonJobListener<ReferenceData>() {

 @Override
 public void jobFailed(Throwable e) {
 statusHandler.handle(Priority.ERROR,
 "Unable to finish QueryScript job", e);

 }

 @Override
 public void jobFinished(ReferenceData result) {
 getActiveRefSet();
 if(!result.getGrid().equals(getActiveRefSet().getGrid())) {
 setActiveRefSet(result);
 }
 };
};

coordinator.submitAsyncJob(executor, listener);

ReferenceData data = coordinator.submitSyncJob(executor);

IDataStore
IDataStore is the interface for storing and accessing raw data that has been decoded. The current
implementations are PypiesDataStore and CachingDataStore; the other implementations are
legacy implementations that have been superseded by the PypiesDataStore. Currently IDataStore
implementations store to hdf5, but in theory the storage format could change in the future.

To access a �le, you must �rst create the IDataStore object by using
DataStoreFactory.getDataStore(File �le). To add data to the �le, you use
IDataStore.addRecord(IDataRecord) and then call IDataStore.store(). To retrieve data, you can use
any of the retrieve methods on IDataStore. If you wish to retrieve only a column, row, or selected set
of points, you must use a retrieve method that takes a Request object.

PyPIES
PyPIES is Python Process Isolated Enhanced Storage. It is pronounced like Py as in Python followed
by the plural form of a dessert. PyPIES is designed to push all of our hdf5 actions into transactions
that are isolated to a unique process. In short, every time you read or write to hdf5 a separate and
dedicated process will handle that action at the hdf5 API level. You can think of it as a separate hdf5
service, much like postgres runs as a service and handles sql commands, PyPIES runs as a service
and handles IDataStore commands.

Advantages:
EDEX cannot crash in the hdf5 libraries
Removed bottleneck of single-thread per process on hdf5 access
HDF5 service and �le store can reside on different machine than EDEX
Python DynamicSerialize developed to support this

Disadvantages:
All data must be serialized and sent to the service before it can be written

PyPIES Architecture
PyPIES is built on the following components:

Apache Http Server (httpd). For serving http requests and returning responses.
�. mod_wsgi. Module for httpd to serve python
�. werkzeug. Python package that implements wsgi

dynamicserialize python package. For serializing/deserializing requests and responses
h5py. For writing/reading hdf5
pypies python package. Glue that deserializes requests and processes data with h5py, then
serializes responses.

Starting PyPIES
To start pypies, as root do /etc/init.d/httpd-pypies start

Con�guring PyPIES
Pypies primary con�g �les are apache con�g �les. The most important is located at
httpd_pypies/etc/httpd/conf.d/pypies.conf. This allows you to con�gure the number of processes
that pypies will have available to process IDataStore requests. The other important �le is at
httpd_pypies/var/www/wsgi/pypies.wsgi. If either of these �les has incorrect paths to python and
its packages, pypies will probably not start. The last con�g �le for apache is at
httpd_pypies/etc/httpd/conf/httpd.conf. This �les controls a number of options including port
number.

EDEX is con�gured to use the pypies server address speci�ed in edex/bin/setup.env.

You can also con�gure the number of connections an EDEX instance can have open to pypies at
any given time, and the timeout value. The number of connections edex can open to pypies is
currently set in the �le edex/etc/default.sh. If you would like different EDEX Java Virtual Machine

(JVM) to have a different number of connections, set the value in the appropriate .sh �le. The
timeout value is set in edex.xml in the pypiesStoreProps bean.

PyPIES Logs
PyPIES logs to two different locations. For top level apache issues, it logs to apache's error_log
which you can �nd at httpd_pypies/etc/httpd/logs/error_log. The python code that processes
requests and returns responses is logging to awips2/pypies/logs/pypies.log by default.

Due to the nature of multiple processes attempting to write to the same �le, pypies starts a
separate logging service. Each individual process will log to a socket, while this separate logging
service reads from the socket and writes to the �le, rolling over the �le at midnight each day.

Python
Python can be used in two ways, either through Java or through the command line. When using
python from Java, it is a hybrid of Java and python objects; whereas from the command line, it is
purely python. This section will only cover the use through Java.

The interface from Java to Python is built on Java Embedded Python (JEP). The best way to call
Python from Java is to use the class PythonScript or other derivatives of the class
PythonInterpreter. The javadoc explains the methods on those classes. Each separate instance of a
PythonInterpreter object results in a separate, mostly sandboxed python interpreter.

Gotchas
All access to a Python interpreter must be on the same thread that created the interpreter.
You should call dispose() when �nished with an interpreter to free up memory.
Importing numpy in python leaks memory, so you should reuse interpreters that import
numpy instead of disposing them.
Some Python extensions may not work well in multiple interpreters (e.g. h5py).

Python/Java Code
Inside an interpreter, JEP will automatically convert primitives and Strings between Java and
Python, but otherwise every Java object is wrapped in a python object known as a PyjObject.
PyjObjects can be used throughout python code just like any other python object. You can also call
the Java methods on a PyjObject, however, any arguments passed to them must be primitive
objects or other PyjObjects.

To import a Java class, you use the from syntax:

This imports the classes ReferenceID and ReferenceData as PyjClasses. PyjClasses implement
python's __call__ method, so to create an instance and call the Java constructor you just call the
pyjclass, such as

Transforming Between Java Arrays and Numpy Arrays
To send a primitive Java array to python, the best way is to implement the Java interface
INumpyable. The implementation should provide the x and y dimensions of the numpy array, and
then getNumPy() returns an Object[] of all the primitive arrays to return.

In python code, with a PyjObject of the INumpyable implementation, simply do

where obj is the INumpyable PyjObject, and x will be a python list of numpy arrays corresponding
to the primitive arrays returned by getNumPy().
To send numpy arrays back to Java, ensure the Java method you are calling accepts the
appropriate primitive array as an argument, and simply pass it along.

from com.raytheon.uf.common.dataplugin.gfe.reference import ReferenceID, ReferenceData

instance = ReferenceID()

x = obj.__numpy__

Point Data
Point data is used when each data record describes data at a single point (lon, lat). Point data is
designed to hold many parameters for each point with each point having the exact same
parameters. Often the parameters describe a single value such as surface temperature, or humidity,
but it can also be used to hold multiple values for data throughout the atmosphere.

PointDataContainer
The primary way to interact with point data is through a PointDataContainer. A PointDataContainer
holds all the parameters for several different points. Most often, when interacting with a
PointDataContainer you will want to use a PointDataView. A PointDataView provides a view into
the container for a single record. On edex when you decode you will use
PointDataContainer.append to get a view which you will populate with data. On CAVE you will
request a container with the parameter you use and you will use PointDataContainer.readRandom
to iterate over the data records in the container.

PluginDataObject
For point data plugins the PluginDataObject must implement IPointData. This interface is just a
getter and a setter for a PluginDataView. This view will be set in the decoder and then retrieved by
the Dao to store in HDF5. Usually a point data object will also have a location object with a latitude
and longitude that is stored in the dataURI for querying. Everything else about the
PluginDataObject should be similar to other data plugins.

Dao
The Dao for a point data plugin must extend PointDataPluginDao. This class handles all of the
storage and retrieval of point data to hdf5. The PointDataPluginDao also provides a means for
loading the default descriptions for your data.

Descriptions
There are two description �les for each point data plugin that describe what parameters are stored.

HDF5 Data Description
The HDF5 data description for a point data plugin is found in res/pointdata/{pluginName}.xml. This
�le contains a description of each �eld stored in hdf5 for the points in the data. Here is an example:

Each parameter has several �elds.
name. The name for the parameter, this is how it is referenced throughout the system
numDims. If there is one data value for each point this is one, if there are multiple values(for
instance for different elevations), then this can be 2.
type. STRING,LONG,FLOAT,DOUBLE,INTEGER.
unit. The data units for this data, these can be used for automatic conversion later, this
should be parseable by the javax.measure.units parser.

<pointDataDescription>
 <parameter name="temperature" numDims="1" type="FLOAT" unit="K" />
 <parameter name="dewpoint" numDims="1" type="FLOAT" unit="K" />
 <parameter name="windSpeed" numDims="1" type="FLOAT" unit="m/s" />
 <parameter name="windDir" numDims="1" type="FLOAT" unit="degree" />
 <parameter name="windGust" numDims="1" type="FLOAT" unit="m/s" />
</pointDataDescription>

DB Data Description
The db data description for a point data plugin is usually found in
res/pointdata/{pluginName}db.xml. This �le contains a description of each �eld stored in the
database that can be requested through a point data query. Here is an example:

Each parameter has several �elds:
name. The name for the parameter, this is how it is referenced throughout the system
queryName. The query string to use for hibernate when requesting this parameter.
type. STRING,LONG,FLOAT,DOUBLE,INTEGER
unit. The data units for this data, these can be used for automatic conversion later, this
should be parseable by the javax.measure.units parser.
�llValue. This value can be used for numeric types which may store null in the database, but
null is invalid in the Point Data Container.

Decoder
The decoder for a point data plugin is the same as for any other plugin except it stores data in a
PointDataView. The decoder needs to create new PointDataContainers to store the data in, this can
be easily done using the description which can be retrieved from the dao. Here is an example of
how a PluginDataObject is created within a decoder:

Requesting Data on CAVE
The PointDataRequest class provides static methods for retrieving point data on CAVE. The method
most often used is requestPointDataAllLevels. The javadoc for this method describes how to use
this method and what to pass in. This method returns a PointDataContainer. Processing of this
container is usually done in a loop similar to this:

<pointDataDbDescription>
 <parameter name="latitude" queryName="location.latitude" type="FLOAT" unit="°" />
 <parameter name="longitude" queryName="location.longitude" type="FLOAT" unit="°" />
 <parameter name="elevation" queryName="location.elevation" type="FLOAT" fillValue="-
9999" unit="m" />
 <parameter name="stationId" queryName="location.stationId" type="STRING" />
 <parameter name="reportType" queryName="reportType" type="INT" />
 <parameter name="corIndicator" queryName="corIndicator" type="STRING" />
 <parameter name="dataURI" queryName="dataURI" type="STRING" />
</pointDataDbDescription>

PluginDao pluginDao = PluginFactory.getInstance()
 .getPluginDao(pluginName);
PluginDataObject record = pluginDao.newObject();
PointDataContainer pdc = PointDataContainer.build(pluginDao
 getPointDataDescription(null));
PointDataView pdv = pdc.append();
record.setPointDataView(pdv);
/* populate metadata in record */
/* populate data in the pdv */
pdv.setFloat("temperature", sampleMethodToParseTemperature());
pdv.setFloat("dewpoint", sampleMethodToParseDewpoint());

PointDataContainer pdc = PointDataRequest
 .requestPointDataAllLevels(time, plugin, parameters,
 null, requestConstraints);
for (int uriCounter = 0; uriCounter < pdc.getAllocatedSz(); uriCounter++) {
 PointDataView pdv = pdc.readRandom(uriCounter);
 float latitude = pdv.getFloat("latitude");
 float longitude = pdv.getFloat("longitude");
 // do something with the point data view here.
}

PlotResource2
It is possible to display any point data type on CAVE in PlotResource2 with very little java code. In
order for a new plugin to work with PlotResource2 there are a few constraints on the
PluginDataObject. The PluginDataObject must have a �eld called location that contains a location
object. An existing object such as SurfaceObsLocation a custom object can be created to hold the
location. This object must contain a latitude, longitude, and stationId. Additionally, these �elds
must be included in the dataURI for the pluginDataObject.

To display a plot an svg �le is needed. This can be seen in the existing svg �les in the plotModels
directory in the localization perspective. The most important thing to understand is that the
plotParam attribute on a text element speci�es the name of a parameter directly from the EDEX
description �les. The important part of a plotModel �le is what is within the symbol element. Here is
a very simple example.

This symbol element has three text elements. The �rst two are lat and lon. Notice that these have a
plotMode of null which means nothing will be displayed; these two are just used so that
PlotResource2 knows where to put the plot on a map. The third element plots the value of the
parameter myParam at the center of the plot. To display other parameters, add more elements
similar to the one for myParam. By changing the x and y values this changes where the different
parameters appear in the plot.

<symbol
 overflow="visible" id="plotData" class="info">
 <text
 id="lat" plotMode="null" class="text" plotParam="latitude" x="0" y="0">0
 </text>
 <text
 id="lon" plotMode="null" class="text" plotParam="longitude" x="0" y="0">0
 </text>
 <text
 id="myParam" plotMode="text" plotParam="myParam" x="0px" y="0px">75
 </text>
</symbol>

Creating a New PluginDataObject Derived
Class

Description of the PluginDataObject Base Class
All data objects derive from the com.raytheon.uf.common.dataplugin.PluginDataObject abstract
base class. This class de�nes the minimum functionality for any PluginDataObject (PDO) that may
be persisted to a database. In particular the class exposes the following attributes:

Id. A unique record identi�er automatically generated by the database.
dataUri. A construction that uniquely identi�es this data object within a plugin table. In the
base PluginDataObject, the dataUri consists of the pluginName and the dataTime.
pluginName. Short name of the plugin name. For example using the following plugin project
name [com.raytheon.uf.edex.plugin.myplugin], the plugin short name is "myplugin".
dataTime. The time that should be associated with this data object. The most common
dataTime for point data is the time that the data was observed. A validTime for forecast data
is also common.
insertTime. The time that the data object was inserted into the database.

Currently the insertTime, if set, will be overwritten with the current system time if the
PDO is not an IPersistable. If the instance is IPersistable, then the insertTime will remain
as set.

messageData. The raw data that was used to generate the data object. This attribute value is
not required and may be left null.

When examining the PluginDataOject class and its associated database �elds the developer may
note that the id attribute is the only �eld indicated as NOT NULL. Even so the pluginName is used
explicitly as the base of the dataURI and the dataTime attribute is declared as the �rst item in the
dataURI. If these values are null then no error will occur, however a useless dataURI of "/null/null"
will be generated.

Figure 2-5 shows the class diagram showing the PluginDataObject, its ancestors, and a possible
descendant.

Figure 2-5. PluginDataObject Class Hierarchy

Description of a Minimally Derived PluginDataObject
The PluginDataObject also exposes methods for constructing the dataUri, retrieving dataUri �elds
by column identi�er, as well as getter and setter methods for the above attributes. The following
assume a minimally derived PDO named FooRecord that exposes a single Integer attribute,
reportType.

@Entity
@Table(name = "foo", uniqueConstraints = { @UniqueConstraint(columnNames = { "dataURI"
}) })
@XmlRootElement
@XmlAccessorType(XmlAccessType.NONE)
@DynamicSerialize
public class FooRecord extends PluginDataObject {

 private static final long serialVersionUID = 1L;

 /**
 * A report type that identifies this instance.
 */
 @DataURI(position = 1)
 @Column
 @DynamicSerializeElement
 @XmlAttribute
 private Integer reportType;

 /**
 * Construct an empty instance of this class.
 */
 public FooRecord() {
 }

 /**
 * Constructor for DataURI construction through base class. This is used by
 * the notification service.
 * @param uri
 * A dataURI applicable to this class.
 */
 public FooRecord(String uri) {
 super(uri);
 }

 /**
 * Get the report type that identifies this instance.
 * @return The reportType identifying the instance.
 */
 public Integer getReportType() {
 return reportType;
 }

 /**
 * Set the report type to identify this instance.
 * @param reportType
 * The reportType to set. Any not-null Integer value.
 */
 public void setReportType(Integer reportType) {
 this.reportType = reportType;
 }

 /**
 * Get the IDecoderGettable reference for this record. This class returns
 * a null reference indicating that the class does not implement the
 * IdecoderGettable interface.
 * @return The IDecoderGettable reference for this record.
 */
 @Override
 public IDecoderGettable getDecoderGettable() {
 return null;

Lines 1 through 5 are preamble that guide the persistence mechanism.
@Entity. This annotation indicates that this class should be persisted to a database. Any class
marked with this annotation must expose an empty (no argument) constructor, may not be
�nal, and must de�ne a primary key. Note that the primary key id, for a class is implicit by
extending the PluginDataObject base class.
@Table. Indicates that this is the primary table for this Entity. This annotation is required so
that the uniqueConstraint on dataURI may be declared.
@XmlRootElement. De�nes this class as the root element for an XML tree containing this
class' data.
@XmlAccessorType. This annotation provides control over the default serialization of
properties and �elds in this class. The use of XmlAccessType.NONE indicates that no �elds or
properties will be bound unless they are speci�cally annotated.
@DynamicSerialize. Indicates that this class should be serialized.

Line 6 tells the compiler that we are extending the PluginDataObject base class. All PDOs must
extend this base class. Other functionality may be exposed by implementing one or more of the
following interfaces.

IPersistable. PDOs implementing this interface indicate to the persistence layer that the data
in this class will be stored to an HDF repository. In addition this interface exposes methods
that allow clients to retrieve the persistence time for this object as well as utility methods that
aid in storing to the HDF repository.
IDecoderGettable. Exposes methods that allow class attribute values and associated units to
be read using parameter names.
ISpatialEnabled. Exposes the "getSpatialObject" method which indicates that this object is
locatable in some reference frame.
IPointData. Expose methods allow instance data to be stored using the PointData
functionality.

Lines 13 through 17 declare an attribute that will be used to store a "report type" as an Integer value.
Several Java annotations are used in this declaration as follows.

@DataURI. This annotation �ags an attribute so that it is used as part of the datauri
construction. This annotation takes two arguments;
"position" is mandatory and gives the attribute's physical position within the constructed
datauri. Note that positions start at 1. Position 0 is reserved for the DataTime contained in the
PluginDataObject base class.
"embedded" is optional and defaults to "false". A value of "true" indicates that this attribute is
a composite object that will contribute its attributes to the datauri being constructed.
@Column. This annotation is used to specify that this attribute will be mapped to a �eld
within the table declared in line 2. All arguments are optional with "length," "nullable," and
"unique" being common.
@DynamicSerializedElement. Flag that indicates that this attribute will be serialized. An
assumption is made that proper setter and getter methods exist for the attribute. The
annotation takes no arguments.
@XmlAttribute
@XmlElement. These annotations control the mapping of class attributes to/from XML
marshalling using the JAXB API.

The default no-argument constructor required by the @Entity annotation is de�ned on line 22 and
line 31 de�nes a constructor which takes a dataURI as an argument. The setter and getter methods
for the class attribute are de�ned in lines 35 to 50 and �nally the getDecoderGettable method is
de�ned for this class in lines 58 to 61.

Common Usage
The following code shows a common idiom for creating and using a PDO. Using the derived PDO
above:

 }
}

Also common is using a parser class to decode the data and pass back a populated array of data
objects, similar to the following

There are of course many variations on the above themes. In the second case we would expect that
the PluginDataObject has been fully populated by the Parser class.

Creating Derived Class
There are currently two methods for creating a derived PDO class. The �rst is to copy an existing
class and then modify the class de�nition. This can be useful however the entire process can be
error prone. The second method is to use the "mkPlugin.sh" shell script. This script will create a
skeleton for all parts of a data plugin using the current coding standards and conventions.

For example:

will generate the following:

public PluginDataObject [] decode(String data) {
 PluginDataObject [] retData = null;

 // Create a new instance of the PluginDataObject
 FooRecord record = new FooRecord();

 // Assign data to the fields
 record.setPluginName("foo");
 record.setReportType(10);
 // Note that the DataTime constructor requires a java.util.Date
 record.setDataTime(new DataTime(new java.util.Date());

 // Now construct the dataURI
 try {
 record.constructDataURI();
 } catch(PluginException pe) {
 // do something with the invalid record, set it to null here
 record = null;
 }
 if(record != null) {
 // create an array containing the record.
 retData = new PluginDataObject[] { record, };
 } else {
 // create an empty array
 retData = new PluginDataObject[0];
 }
 // And pass the return data to the caller.
 return retData;
}

Parser p = new Parser(data);
PluginDataObject [] retData = p.parseData();
return retData;

mkPlugin.sh pluginName PluginName

mkPlugin.sh foo Foo

These generated project directories can be copied into the Eclipse workspace and imported using
the menu selection "File | Import" to display the Import dialog (see Figure 2-6).

base decoder project directory
 com.raytheon.uf.edex.plugin.foo
created files
 com.raytheon.uf.edex.plugin.foo/.project
 com.raytheon.uf.edex.plugin.foo/.classpath
 com.raytheon.uf.edex.plugin.foo/.settings
 com.raytheon.uf.edex.plugin.foo/build.properties
 com.raytheon.uf.edex.plugin.foo/component-deploy.xml
 com.raytheon.uf.edex.plugin.foo/bin
 com.raytheon.uf.edex.plugin.foo/META-INF/MANIFEST.MF

 com.raytheon.uf.edex.plugin.foo/src/com/raytheon/uf/edex/plugin/foo/FooDecoder.java
 com.raytheon.uf.edex.plugin.foo/utility/edex_static/base/distribution/foo.xml

 com.raytheon.uf.edex.plugin.foo/res/spring/foo-ingest.xml
 com.raytheon.uf.edex.plugin.foo/res/spring/foo-common.xml

base dataplugin project directory
 com.raytheon.uf.common.dataplugin.foo
created files
 com.raytheon.uf.common.dataplugin.foo/.project
 com.raytheon.uf.common.dataplugin.foo/.classpath
 com.raytheon.uf.common.dataplugin.foo/.settings
 com.raytheon.uf.common.dataplugin.foo/build.properties
 com.raytheon.uf.common.dataplugin.foo/component-deploy.xml
 com.raytheon.uf.common.dataplugin.foo/bin
 com.raytheon.uf.common.dataplugin.foo/META-INF/MANIFEST.MF

 com.raytheon.uf.common.dataplugin.foo/src/com/raytheon/uf/common/dataplugin/foo/FooR
ecord.java
 com.raytheon.uf.common.dataplugin.foo/META-INF/services/com.raytheon.uf.common.seria
lization.ISerializableObject

Figure 2-6. Import Dialog: Select
Selecting "Existing Projects into Workspace" will bring up the Import Project dialog, which will
require the user to select the Eclipse Workspace to import from. See Figure 2-7.

Figure 2-7. Import Dialog: Import Projects
After these projects have been imported into the Eclipse workspace, an entry for each project
needs to be entered into the �le "feature.xml" located in the "com.raytheon.edex.feature.uframe"
project. Note that the "...edex.plugin..." project should only need to be mentioned in this feature.xml.
The "...common.dataplugin..." project will also need to be added anywhere else it is referenced.

TopoAccess
In EDEX: Import com.raytheon.uf.edex.topo.TopoQuery.

In CAVE: import com.raytheon.uf.viz.core.topo.TopoQuery.

Get a TopoQuery instance by calling TopoQuery.getInstance().

To retrieve topo data for a single point: Call TopoQuery.getHeight(coordinate).

To retrieve topo data for a list of points (or along a path): Call
TopoQuery.getHeight(coordinateList).

To retrieve topo a grid of topo data: Call TopoQuery.getHeight(gridGeometry).

JAXB Serialization
Java Architecture for XML Binding (JAXB) is a set of Java classes in the javax.xml.* packages. They
are used to serialize data in xml format, maintain con�guration data for GUI displays, and send data
to/from CAVE and the EDEX server. The following is an example of how it is used.

The xml �le to parse and place in a data class is the localized �le AvnFPS->Con�guration->scripts-
>ClimateDataBase.xml:

In the package com.raytheon.viz.aviation.xml is the class ClimateDataFTPArgs, which can be used
to marshal / unmarshal the xml �le as shown in Figure 2-3.

Figure 2-3. ClimateDataFTPArgs.java Tab
The class on line 47 in the �gure implements ISeralizableObject. Using this interface indicates the
class uses the JAXB annotations and in conjunction with adding the class to the
com.raytheon.uf.common.serialization.ISerializableObject �le in the META-INF/services directory
will ensure the localized �le is detected at run time.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <!-- comment removed
 -->

<ClimateDataFTPArgs>
 <Site>ftp3.ncdc.noaa.gov</Site>
 <DataDir>pub///data/noaa</DataDir>
 <IshDir>/pub/data/noaa</IshDir>
 <User>anonymous</User>
 <Password>daniel.gilmore@noaa.gov</Password>
</ClimateDataFTPArgs>

Line 45 gives the name of the tag for the root element of the xml �le. All other tags for this data
element need to be embedded in this tag, i.e., <ClimateDataFTPArgs>. Lines 49 and 50 associate
the string element site with tag <Site>. The other data elements are associated with an element
tags in a similar manner. The rest of a data class is normally getter and setter methods.

In the package com.raytheon.viz.aviation is the class GenScriptsDlg. Its initFtpArgs method gets
the localized xml �le and uses JAXB to unmarshal the �le into an instance of the
ClimateDataFTPArgs class as shown in Figure 2-4.

Figure 2-4. GenScriptsDig.java Tab
For a more complex example, see the class com.raytheon.uf.common.menus.AbstractMenuUtil's
toXml and fromXml methods.

Dynamic Serialization
Dynamic Serialize is a software layer built on top of Thrift (see http://wiki.apache.org/thrift/
(http://wiki.apache.org/thrift/) for more information). It is extremely fast, and it is the recommended
method of communication between client applications (such as CAVE) and EDEX.

Dynamic Serialize uses getters and setters on a Java class and cglib (see
http://cglib.sourceforge.net/ (http://cglib.sourceforge.net/)) to perform serialization and
deserialization. To use Dynamic Serialize, follow these steps:

�. Add the @DynamicSerialize annotation to the Java class.
�. Add the @DynamicSerializeElement annotation to the �elds on the class you wish to serialize.
�. Ensure each �eld annotated in the previous step has getters and setters that follow the

standard Java naming conventions. Eclipse can generate these for you; right-click in the �le,
select Source -> Generate Getters and Setters.

�. Use SerializationUtil.transformToThrift() to serialize data and
SerializationUtil.transformFromThrift() to deserialize data.

Serialization Adapters
To serialize complex or third-party classes, you will need to provide a serialization adapter.
Implement the ISerializationTypeAdapter interface (see
com.raytheon.uf.common.serialization.ISerializationTypeAdapter) and register the adapter with
the DynamicSerializationManager (see
com.raytheon.uf.common.serialization.DynamicSerializationManager).

Implementing a serialization adapter requires implementing a serialize() and deserialize() method.
The order in which you serialize data should be the opposite of the order in which you deserialize
data. See the BuiltInTypeSupport class
(com.raytheon.uf.common.serialization.BuiltInTypeSupport) for a number of serialization
adapter examples for classes from the Java standard library.

Registration can be done in either of two ways:
�. For in-house developed code: add a @DynamicSerializeTypeAdapter annotation to the class.

�. For third-party or Java standard library classes, modify the DynamicSerializationManager's
static block to directly register the adapter. The following code snippet registers the
DateSerializer class to handle serialization and deserialization of the standard Date class with
the DynamicSerializationManager:

// ExampleClass.java
@DynamicSerialize
@DynamicSerializeTypeAdapter(factory = ExampleClassAdapter.class)
public class ExampleClass {
 // ... rest of class code omitted...
}

// DynamicSerializationManager.java
public class DynamicSerializationManager {

 // ...skipping declaration of private fields, internal classes
 static {
 SerializationMetadata md = new SerializationMetadata();
 md.serializationFactory = new DateSerializer();
 md.adapterStructName = Date.class.getName();
 serializedAttributes.put(Date.class.getName(), md);
 // ...skipping registration of other classes ...
 }
}

http://wiki.apache.org/thrift/
http://cglib.sourceforge.net/

Using Dynamic Serialize with Python
Dynamic Serialize communicates using a Thrift byte stream, which allows cross language
communication using the serialized data. In the AWIPS II baseline, we have provided the
dynamicserialize Python package to enable Python to communicate with EDEX using Dynamic
Serialize. The following snippet of Python code explains how to serialize and deserialize data using
the dynamicserialize package:

For more information on how to use the EDEX Request/Handler API to allow Python code to
communicate with EDEX, see the documentation on the Request/Handler API.

Caveats on the Python Interface
Because there are Java language features not supported in Python (and vice versa), there a
number of complications and caveats you must be aware of:

�. When serializing Python objects to send to Java, the Python types must match the Java
types. For example if a Java �eld with @DynamicSerializeElement on it is a primitive long, the
Python type must be long. Using a Python int in that �eld will cause an exception in Java.
Python has no way of knowing the Java �eld's type, so it assumes you set the value to the
matching type.

�. As Java enums have no Python equivalent, they are serialized as strings. In Python enum
�elds should be assigned the name of the enum value. Take as an example the GFE class
GridParmInfo (see com.raytheon.uf.common.dataplugin.gfe.db.objects.GridParmInfo). In
Java, the values for the gridType �eld would be GridType.SCALAR or GridType.NONE. In
Python, you would assign these �elds "SCALAR" or "NONE."

�. The Python dynamicserialize.dstypes package must have knowledge of the classes you wish
to serialize or deserialize. These Python classes are equivalents to the Java classes. Luckily you
can auto-generate these Python modules if one does not exist for your class yet. See the next
section for more information.

�. If the Java objects are serialized with adapters, you must have equivalent adapters in the
dynamicserialize.adapters package.

Converting Java Classes to Python
The PythonFileGenerator is provided as a tool for generating Python modules and classes for use
with the Python dynamicserialize package. It is located in the plugin
com.raytheon.uf.common.serialization. It has a Java main() that analyzes Java @DynamicSerialize
classes and produces an equivalent Python module and class. We recommend you run it from
Eclipse, and you may need to adjust the classpath on the Run Con�guration screen to include the
Java plugin project that you wish to serialize.

The tool takes two arguments:
�. '-f �lename' where �lename is the absolute path to a META-

INF/services/com.raytheon.uf.common.serialization.ISerializableObject �le or any �le that lists
the objects you want to be serialized by fully quali�ed class name, one per line.

�. '-d outputDir' where outputDir is your dynamicserialize.dstypes directory.

The tool will generate a Python class for each Java class it �nds in the �lename argument, and it will
generate the necessary directory structures and __init__.py �les for each subpackage so that the
classes can be imported using 'from dynamicserialize.dstypes.packageName import *' syntax.

DynamicSerializeSample.py

import dynamicserialize
bytes = dynamicserialize.serialize(obj)
send bytes somewhere, either a service or a file
response = dynamicserialize.deserialize(bytesResponse)

Python Serialization Adapters
If the Java class utilized a serialization adapter, you must also create a serialization adapter for the
Python class. To create a serialization adapter in Python you must do the following:

�. Create a Python module within the dynamicserialize.adapters package that implements
serialize and deserialize methods and has a global ClassAdapter that calls out which class it
handles.

�. Register the serialization adapter by altering the dynamicserialize.adapters package's
__init__.py module.

The following is source code for a serialization adapter that handles the Java standard library class
Point (see java.awt.Point and com.raytheon.uf.common.serialization.adapters.PointAdapter for
Java implementations):

As you can see, this module implements its serialize and deserialize methods in ways very similar to
its Java counterpart. The ClassAdapter global calls out the fully-quali�ed name of the Java class
that is handled by this serialization adapter. If you have multiple classes that, for some reason, could
be handled by the same adapter, ClassAdapter could also be a list of class names.

Now to register this adapter so it can be used, we alter the dynamicserialize.adapters package's
__init__.py �le to add an entry for PointAdapter to the global __all__. See the following:

PointAdapter.py:
Adapter for java.awt.Point
from dynamicserialize.dstypes.java.awt import Point

ClassAdapter = 'java.awt.Point'

def serialize(context, point):
 context.writeI32(point.getX())
 context.writeI32(point.getY())

def deserialize(context):
 x = context.readI32()
 y = context.readI32()
 point = Point()
 point.setX(x)
 point.setY(y)
 return point

__init__.py for Dynamic Serialize adapters.

__all__ = [
 'PointAdapter',
 'StackTraceElementAdapter',
 # ... rest of list omitted for brevity
]

rest of module's code follows...

Localization
Localization serves two primary purposes:

�. To allow site and user-speci�c customizations of the software.
�. To back up and share these customizations to different workstations.

All changes to localization �les are dynamically read in when made via the Localization Perspective
in CAVE. This is accomplished via Observer classes in the com.raytheon.uf.common.localization
package. The Localization Perspective is the preferred method of editing localization �les. This lets
the AWIPS software manage the �les and ensures the �les do not get out of sync.

Localization Levels
There are currently �ve de�ned localization levels (as de�ned in
com.raytheon.uf.common.localization.LocalizationContext.LocalizationLevel):

�. Base. Files that should never be changed by users and are applicable to all sites.
�. Con�gured. Files that should never be changed by users but are site-speci�c �les generated

from con�guration �les that are shared by all users con�gured for that site.
�. Site. Files that contain site-speci�c information and are shared by all users con�gured for that

site.
�. Workstation. Files speci�c to a workstation (based on hostname).
�. User. Files speci�c to the user.

These levels are hierarchical, so there is a set order of precedence that should be used. If a user
version of a �le exists, it takes precedence over the site, con�gured and base versions. If a site
version of the �le exists, it takes precedence over the con�gured and base versions. If a con�gured
version of the �le exists, it takes precedence over the base version. Hence, the order is user >
workstation > site > con�gured > base. Typically the base version of the �le is either a �le that
should never be changed or provides defaults if there are no site and user preferences.

Localization Types
Localization Types (de�ned in
com.raytheon.uf.common.localization.LocalizationContext.LocalizationType) provide a basic
way to categorize localization �les based on which AWIPS2 component (the CAVE client or the
EDEX server) will be primarily using the �le. There are currently four localization types:

�. CAVE_CONFIG. con�g.xml CAVE �les tied to preference stores.
�. CAVE_STATIC. Files only used by CAVE.
�. COMMON_STATIC. Files that both CAVE and EDEX use.
�. EDEX_STATIC. Files only used by EDEX.

Localization Context
The localization context is an object that consists of a LocalizationType, LocalizationLevel, and a
context name. The LocalizationContext is used in some methods of retrieving localization �les.

Localization Code
The most commonly used java code for localization are these �les:

com.raytheon.uf.common.localization.LocalizationContext.LocalizationLevel
com.raytheon.uf.common.localization.LocalizationContext.LocalizationType
com.raytheon.uf.common.localization.LocalizationContext
com.raytheon.uf.common.localization.PathManagerFactory

The following are methods of retrieving localization �les in all localization contexts.
List all xml �les in a directory.

Get a HashMap of all localization versions of a particular �le.

Retrieve a Site level �le by name.

Read/Write an XML �le via Localization.

Adding New Directories to the Localization Perspective
For directories and �les to show up in the Localization Perspective, an entry must be made in a
plugin.xml �le. These �les are in the viz packages. The steps follow.

�. Open the plugin.xml �le in Eclipse.
�. Select the Extensions tab.
�. Look in the list for the com.raytheon.uf.viz.localization.localizationpath.
�. If it does not exist, click the Add button.
�. In the Extension Point Filter dialog, type "*localization" as shown in Figure 2-1.

String[] extensions = new String[] { ".xml" };
String fileNamePath = "/path/to/file/";
LocalizationFile[] locFiles = PathManagerFactory.getPathManager().listStaticFiles(
 fileNamePath, extensions, false, true);

IPathManager pm = PathManagerFactory.getPathManager();
Map<LocalizationLevel, LocalizationFile> shefIssueMap = pm.getTieredLocalizationFile(Loc
alizationType.COMMON_STATIC, "/path/to/file");

IPathManager pm = PathManagerFactory.getPathManager();
LocalizationContext lc = pm.getContext(LocalizationType.COMMON_STATIC,
 LocalizationLevel.SITE);
LocalizationFile xmlLocalizationFile = pm.getLocalizationFile(lc,
 "/path/to/file");

// Get the file from localization
IPathManager pm = PathManagerFactory.getPathManager();
LocalizationContext lc = pm.getContext(LocalizationType.COMMON_STATIC,
 LocalizationLevel.SITE);
LocalizationFile xmlLocalizationFile = pm.getLocalizationFile(lc,
 "/path/to/file");

// Read the xml contents into the XML data object
XMLObject xml = null;
if (xmlFile != null) {
 xml = (XMLObject) SerializationUtil
 .jaxbUnmarshalFromXmlFile(file.getFile().getAbsolutePath());
} else {
 xml = new XMLObject();
}

// Save the xml object as an xml file
// Localization software takes care of the localization updates
SerializationUtil.jaxbMarshalToXmlFile(xml, xmlLocalizationFile getFile().getAbsolutePat
h());

Figure 2-1. Extension Point Selection
�. Select the com.raytheon.uf.viz.localization.localizationpath item and click Finish. The item

will now be in the list of extensions as shown in Figure 2-2.

Figure 2-2. List of Extensions
�. Right-click on the localizationpath entry and select New->path menu item.
�. Enter a value: A unique identi�er.
�. Enter a name: The name is the �rst-level subdirectory in the Localization Perspective.

��. Enter the localizationType (CAVE_STATIC, COMMON_STATIC, EDEX_STATIC).
��. Enter the Application where the entry will reside within the Localization Perspective (which

main folder). Enter D2D to be in the D2D folder, Hydro Apps to be in the Hydro Apps folder,
etc.

��. The recursive entry defaults to false. Set to true to recursively search for �les within the
localization folder structure.

��. Enter an extension to �lter by extension.
��. Enter a localizationAdapter if needed.
��. Save the �le and restart CAVE.

The resulting xml entry in the �le:

<path
 application="Hydro Apps"
 localizationType="COMMON_STATIC"
 name="Hydro"
 value="hydro">
</path>

UFStatus
The UFStatus class allows for the logging of a message associating it with an AlertViz source,
category, and priority. The following code snippets are from the Java class AvnCon�gFileUtil.
Perform the following steps in using UFStatus:

�. Import the following:

The last import simpli�es the handle method's arguments.
�. Get a status handler:

The same handler can be used for all instances of the class. Since there is overhead in getting
the handler it is best to limit the calls to getHandler. There are other getHandler method calls
that allow you to specify the category and source to use. Normally you will want it to default
which is WORKSTATION and CAVE.

�. Example of a message:

The �rst argument is the Priority enum. It has six values that correspond to the AlertViz
priorities 0-5: CRITICAL, SIGNIFICANT, PROBLEM, EVENTA, EVENTB, VERBOSE. The second is
the message to log message, and the third (null) can be a caught exception that is the reason
for the log. When not null it will generate a stacktrace.

The UFStatus can also be used inside Python scripts. This example is from SmartScript.py:

import com.raytheon.uf.common.status.IUFStatusHandler;

import com.raytheon.uf.common.status.UFStatus;
import com.raytheon.uf.common.status.UFStatus.Priority;

public class AvnConfigFileUtil {

private static final transient IUFStatusHandler statusHandler = UFStatus.getHandler(AvnC
onfigFileUtil.class);

public static LocalizationFile getStaticLocalizationFile(String configFile) {
 IPathManager pm = PathManagerFactory.getPathManager();
 LocalizationFile lFile = pm.getStaticLocalizationFile(configFile);
 if (lFile == null) {
 String site = LocalizationManager.getInstance().getCurrentSite();
 statusHandler.handle(Priority.CRITICAL, "Unable to find \""
 + configFile + "\" under the directory for site " + site + ".", null);

def statusBarMsg(self, message, status, category="GFE"):
 from com.raytheon.uf.common.status import UFStatus
 from com.raytheon.uf.common.status import UFStatus_Priority as Priority
 if "A" == status:
 importance = Priority.PROBLEM
 elif "R" == status:
 importance = Priority.EVENTA
 elif "U" == status:
 importance = Priority.CRITICAL
 else:
 importance = Priority.SIGNIFICANT
 if category not in self._handlers:
 self._handlers[category] = UFStatus.getHandler("GFE", category, 'GFE')
 self._handlers[category].handle(importance, message);

EDEX, Common, and Viz (Visualization) Plugins

EDEX Plugins
From a developer's standpoint, what you are doing here is creating "Common" objects (data) that
will be serialized using thrift and written to HDF5. This is the job of the "EDEX" plugins. This process
takes place in EDEX using one of the Camel server instances. This process can be a direct ingest
path, monitoring a drop directory, or by using a Uniform Resource Identi�er (URI) �lter and
extending the Composite Product Generator pattern. Any one will suf�ce. Because EDEX plugins
work within the Camel Enterprise Service Bus (ESB), some knowledge of how Camel works is
essential. To that end there are two eXtensible Markup Language (XML) �les that describe the
deployable options and the nature of the "Common" plugin to be produced.

�. A common XML �le ~ $pluginname-common.xml
�. An ingest con�g XML �le ~ $pluginname-ingest.xml

Example: We'll call our plugin "example"; this is the "common" �le.

The key things to note from this �le example are the de�nitions for the "Common" plugin that this
"EDEX" plugin will be creating. In the <bean> tag, the <property> attributes that describe the
"pluginName," "dao," and the "record" classes are key. These are pointers to the JAVA classes that
describe the Data Access Object (DAO) and the "Record" class of this plugin.

Example: This is the "ingest" �le. This example shows an EDEX plugin implementing the
"Composite Product Generator" pattern.

<beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:amq="http://activemq.apache.org/schema/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://activemq.apache.org/schema/core
 http://activemq.apache.org/schema/core/activemq-core.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">
 <bean id="examplePluginName" class="java.lang.String">
 <constructor-arg type="java.lang.String" value="example" />
 </bean>

 <bean id="exampleProperties" class="com.raytheon.uf.common.dataplugin.PluginProperti
es">
 <property name="pluginName" ref="examplePluginName" />
 <property name="pluginFQN" value="com.raytheon.uf.common.dataplugin.example" />
 <property name="dao" value="com.raytheon.uf.common.dataplugin.example.dao.Exampl
eDao" />
 <property name="record" value="com.raytheon.uf.common.dataplugin.example.Example
Record" />
 <property name="dependencyFQNs">
 <list>
 <value>com.raytheon.uf.common.dataplugin.radar</value>
 </list>
 </property>
 </bean>

 <bean factory-bean="pluginRegistry" factory-method="register" depends-on="radarRegis
tered">
 <constructor-arg value="example"/>
 <constructor-arg ref="exampleProperties"/>
 </bean>
</beans>

The key things to note from this are: 1) the use of the "SerializationUtil," which deserializes URI
messages that are placed on the product generation queue described in the <from> tag; and 2)
that the name and method to be used by your generator are described in the <bean> tag named
after your "ExampleGenerator" reference. The key thing to understand about the "EDEX" plugins is
that they function for the purpose of creating, analyzing, and distributing the data objects
(Common plugins) that are needed for display in CAVE by the Visualization (Viz) plugins.

Common Plugins
The "Common" data plugins in AWIPS II are the heart of the AWIPS II system. They are the data
transport layer of the triad. They function for one purpose and one purpose alone. To thrift serialize
data to HDF5 when created/ingested on EDEX. Then, deserialize and make that data available on
the CAVE side. The majority of this work is done for you as a developer simply by extending one
class and implementing the interface from another. The PersistablePluginDataObject is the
Abstract class you will extend and the IPersistable interface is the one you will implement.

Example "Common" plugin class: ExampleRecord.java

<beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:amq="http://activemq.apache.org/schema/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://activemq.apache.org/schema/core
 http://activemq.apache.org/schema/core/activemq-core.xsd
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">
 <bean factory-bean="cpgSrvDispatcher" factory-method="register">
 <constructor-arg ref="exampleGenerator"/>
 </bean>

 <camelContext id="example-camel" xmlns="http://camel.apache.org/schema/spring" error
HandlerRef="errorHandler">
 <route id="ExampleGenerate">
 <from uri="jms-generic:queue:exampleGenerate?destinationResolver=#qpidDurabl
eResolver" />
 <doTry>
 <bean ref="serializationUtil" method="transformFromThrift" />
 <bean ref="exampleGenerator" method="generate" />
 <doCatch>
 <exception>java.lang.Throwable</exception>
 <to uri="log:ffmp?level=ERROR&showBody=false&showCaughtExcep
tion=true&showStackTrace=true"/>
 </doCatch>
 </doTry>
 </route>
 </camelContext>
</beans>

The preceding example shows the basic serialization annotations that are used to identify a
particular Plugin Data Object (PDO) and its URI. Notice that they describe the length and the
position of each �eld in the URI. The position is measured starting from position 2 in actuality. So,
something described in your class as position 4 is in actuality at position 6 in the real URI. The
reason for this is that positions 0 and 1 are designated for the "pluginName" and "dataTime." The
manipulation of these is handled by the super class. In our example that would yield this....
Example: /example/11:23:2011 15:23:04:123/wfo/sourceName/dataKey/siteKey

This URI is essential to both writing the record to HDF5 and reading it back out. It is used as a multi-
dimensional unique key, uniquely describing an AWIPS II data record.

@Entity
@Table(name = "example", uniqueConstraints = { @UniqueConstraint(columnNames = { "dataUR
I" }) })
@XmlRootElement
@XmlAccessorType(XmlAccessType.NONE)
@DynamicSerialize
public class ExampleRecord extends PersistablePluginDataObject implements
 IPersistable {

 private static final long serialVersionUID = 76774564365671L;

 @Column(length = 7)
 @DataURI(position = 1)
 @DynamicSerializeElement
 @XmlElement(nillable = false)
 private String wfo;

 @Column(length = 32)
 @DataURI(position = 2)
 @DynamicSerializeElement
 @XmlElement(nillable = false)
 private String sourceName;

 @Column(length = 32)
 @DataURI(position = 3)
 @DynamicSerializeElement
 @XmlElement(nillable = false)
 private String dataKey;

 @Column(length = 32)
 @DataURI(position = 4)
 @DynamicSerializeElement
 @XmlElement(nillable = false)
 private String siteKey;

 /**
 * Default Constructor
 */
 public ExampleRecord() {
 }

 /**
 * Constructs a record from a dataURI
 *
 * @param uri
 * The dataURI
 */
 public ExampleRecord(String uri) {
 super(uri);
 }

The writing of the data to HDF5 is handled by another class that is mentioned in the "EDEX"
common XML �le in the DAO (Data Access Object). In the writing and reading of data in AWIPS II,
this is where the rubber meets the road. The DAO is responsible for writing and populating PDO
records from HDF5.

Example: common "DAO" class. ExampleDAO.java

The majority of the work here is again done for you by the super class you are extending. In this
case the PluginDao class. Since the "Common" plugins are the only ones that are accessed from
both sides of the dependency triad. They are by far the most important link in the chain. Having a
well written and swiftly executing "Common" plugins will aid in both construction and display of
your data on the EDEX and CAVE (Viz) sides.

public class ExampleDao extends PluginDao {

 public ExampleDao(String pluginName) throws PluginException {
 super(pluginName);
 }

 @Override
 protected IDataStore populateDataStore(IDataStore dataStore, IPersistable obj) throw
s Exception {

 ExampleRecord record = (ExampleRecord) obj;

 // Do something to write the record into your HDF5

 // This method is intended to write the transient object that is used to hold th
e data and convert it into HDF5 Data Records. Note URI is the key

 IDataRecord rec = new FloatDataRecord(huc, record.getDataURI(), dataRec, 1, new
long[] { size });

 dataStore.addDataRecord(rec);

 }

 @Override

 public List<IDataRecord[]> getHDF5Data(List<PluginDataObject> objects, int tileSet)
throws PluginException {
 List<IDataRecord[]> retVal = new ArrayList<IDataRecord[]>();

 for (PluginDataObject obj : objects) {
 IDataRecord[] record = null;

 if (obj instanceof IPersistable) {
 /* connect to the data store and retrieve the data */
 try {
 record = getDataStore((IPersistable) obj).retrieve(obj.getDataURI
());
 } catch (Exception e) {
 throw new PluginException("Error retrieving Example HDF5 data", e);
 }
 retVal.add(record);
 }
 }
 return retVal;
 }

}

One last piece of instruction on the "Common" plugins regards the fact that they are frequently
serialized. In AWIPS II most objects are serialized using Facebook's Thrift serialization. In the
"Common" plugins META-INF/services directory, you must add a �le called
"com.raytheon.uf.common.serialization.ISerializableObject". The reason for this is that when
Thrift seeks to serialize and de-serialize a class. It uses this entry in the META-INF as a lookup. So,
any classes you wish to serialize must be listed using Fully Quali�ed Domain Name (FQDN) in the
ISerializableObject �le.

In our example here using ExampleRecord, we would have:
com.raytheon.uf.common.dataplugin.example.ExampleRecord

This class would have to be listed at a minimum in order for the Record to be recognized. If you
have sub-objects that your record contains, they must also be listed in the �le.

Viz Plugins
The last and most visible category of AWIPS II plugins is the "Viz" or CAVE plugin. CAVE plugins are
generally used in the display of data created by the "EDEX" plugins and serialized and transported
by the "Common" plugins. In General, they follow a pattern by which they have what is known as a
"Resource" class and a "ResourceData" class. The purpose of the Resource class is to interact directly
with the Graphical User Interface (GUI) changing the display parameters of the data. Here is an
example Resource class.

Example: ExampleResource.java

public class ExampleResource extends AbstractVizResource<ExampleResourceData, MapDescri
ptor> implements IResourceDataChanged {

 public String icao;

 public String fieldName;

 public String fieldUnitString;

 public ExampleRecord record;

 private HashMap<DataTime, GriddedImageDisplay2> griddedDisplayMap;

 public DataTime displayedDataTime;

 public DataTime previousDataTime;

 private String colormapfile = null;

 /* The font used */
 public IFont font = null;

 public ExampleResource(ExampleResourceData data, LoadProperties props) {
 super(data, props);

 data.addChangeListener(this);
 this.dataTimes = new ArrayList<DataTime>();
 griddedDisplayMap = new HashMap<DataTime, GriddedImageDisplay2>();
 }

 /*
 * (non-Javadoc)
 *
 * @see com.raytheon.viz.core.rsc.IVizResource#getName()
 */
 @Override
 public String getName() {
 ExampleRecord record = null;
 for (ExampleRecord rec : resourceData.dataObjectMap.values()) {
 record = rec;
 break;
 }

 if (record == null) {
 return "";
 }

 StringBuilder prefix = new StringBuilder();
 prefix.append(record.getIcao());
 prefix.append(" ");
 prefix.append(record.getParameterName());

 return prefix.toString();
 }

 @Override
 public void resourceChanged(ChangeType type, Object object) {
 if (type.equals(ChangeType.DATA_UPDATE)) {
 PluginDataObject[] pdos = (PluginDataObject[]) object;
 for (PluginDataObject pdo : pdos) {
 try {
 ExampleRecord example = (ExampleRecord) pdo;

 resourceData.dataObjectMap.put(example.getDataTime(), example);
 record = example;
 } catch (Exception e) {
 statusHandler.handle(Priority.PROBLEM,
 "Error updating Example resource", e);
 }
 }

 issueRefresh();
 }
 }

 @Override
 protected void disposeInternal() {

 for (DataTime key : griddedDisplayMap.keySet()) {
 GriddedImageDisplay2 gDisplay = griddedDisplayMap.get(key);
 if (gDisplay != null) {
 gDisplay.dispose();
 }
 }

 griddedDisplayMap.clear();

 if (font != null) {
 font.dispose();
 }
 }

 @Override
 protected void initInternal(IGraphicsTarget target) throws VizException {
 if (this.font == null) {
 this.font = target.initializeFont("Dialog", 11, null);
 }
 init = true;
 }

 @Override
 protected void paintInternal(IGraphicsTarget target,
 PaintProperties paintProps) throws VizException {

 this.displayedDataTime = paintProps.getDataTime();

 // Pull the record out
 this.record = resourceData.dataObjectMap.get(this.displayedDataTime);

 if (record == null) {
 // Don't have data for this frame
 return;
 }

 GriddedImageDisplay2 gridDisplay = griddedDisplayMap.get(displayedDataTime);

 if (record.getDataArray() == null) {
 record = resourceData.populateRecord(record);
 }

 if (gridDisplay == null) {
 gridDisplay = new GriddedImageDisplay2(ShortBuffer.wrap(record
 .getDataArray()), record.getGridGeometry(), this,
 target.getViewType());
 gridDisplay.init(target);
 this.previousDataTime = displayedDataTime;

 griddedDisplayMap.put(displayedDataTime, gridDisplay);
 }

 ColorMapParameters colorMapParameters = getCapability(
 ColorMapCapability.class).getColorMapParameters();

 if (record != null && init) {
 StyleRule sr = StyleManager.getInstance().getStyleRule(
 StyleManager.StyleType.IMAGERY, getMatchCriteria());
 this.colormapfile = ((ImagePreferences) sr.getPreferences())
 .getDefaultColormap();

 IColorMap cxml = ColorMapLoader.loadColorMap(colormapfile);
 ColorMap colorMap = new ColorMap(colormapfile, (ColorMap) cxml);
 colorMapParameters.setColorMap(colorMap);

 colorMapParameters.setDataMapping(((ImagePreferences) sr
 .getPreferences()).getDataMapping());

 cwatmax = colorMapParameters
 .getDataMapping()
 .getEntries()
 .get(colorMapParameters.getDataMapping().getEntries()
 .size() - 1).getDisplayValue().floatValue();
 cwatmin = colorMapParameters.getDataMapping().getEntries().get(0)
 .getDisplayValue().floatValue();
 colorMapParameters.setDataMax(Short.MAX_VALUE);
 colorMapParameters.setDataMin(Short.MIN_VALUE);
 colorMapParameters.setColorMapMax(cwatmax);
 colorMapParameters.setColorMapMin(cwatmin);

 init = false;
 }

 gridDisplay.paint(target, paintProps);

 }

 /*
 * (non-Javadoc)
 *
 * @see
 * com.raytheon.viz.core.rsc.capabilities.IInspectableResource#inspect(com
 * .vividsolutions.jts.geom.Coordinate)
 */
 @Override
 public String inspect(ReferencedCoordinate latLon) throws VizException {
 String inspect = "NO DATA";
 if (record != null) {

 if (record.getDataArray() == null) {
 record = resourceData.populateRecord(record);
 }

 Coordinate coor = null;
 try {
 if (record.getDataArray() != null) {
 coor = latLon.asGridCell(record.getGridGeometry(),
 PixelInCell.CELL_CENTER);
 int index = (int) ((record.getNx() * Math.round(coor.y)) + Math.roun
d(coor.x));
 int value = 0;
 if (index < record.getDataArray().length && index > -1) {

Note that the Resource class implements and extends speci�c classes. Resources will in most cases
extend the AbstractVizResource class. Note also that the Resource's ResourceData class is a
parameter passed to the public constructor for the Resource class. This is not by accident. It is the
ResourceData that gives the Resource class the PDOs ("Common") plugins it will display. All of the
methods listed in this ExampleResource are methods required to implement or otherwise override.
The IResourceDataChanged interface allows the Resource to receive updates of new PDOs when
new ones are created by EDEX. There are many other interfaces you can implement for speci�c
needs if your Resource requires them.

The other class that most CAVE ("Viz") plugins have is the ResourceData class. The ResourceData
class serves to gather and store "Common" data plugins that the Resource will display.

 value = record.getDataArray()[index];

 if (value >= 10) {
 inspect = value + ": "
 + SCTI.getSCTImessage(value);
 }
 }
 }
 } catch (TransformException e) {
 e.printStackTrace();
 } catch (FactoryException e) {
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 return inspect;
 }

 @Override
 public void project(CoordinateReferenceSystem crs) throws VizException {
 for (DataTime dTime : griddedDisplayMap.keySet()) {
 GriddedImageDisplay2 gDisplay = griddedDisplayMap.get(dTime);
 if (gDisplay != null) {
 gDisplay.reproject();
 }
 }
 }

 @Override
 public void remove(DataTime dataTime) {
 this.dataTimes.remove(dataTime);
 GriddedImageDisplay2 display = this.griddedDisplayMap.remove(dataTime);
 if (display != null) {
 display.dispose();
 }
 }
}

There are a couple of things to note in this example of ResourceData class. Notice the
@XmlAttribute annotations that are placed on some of the public variables. The reason for this is
that these are used to �lter which URI's of a plugin type you will see in your Resource. This is the

@XmlAccessorType(XmlAccessType.NONE)
@XmlType(name = "exampleResourceData")
public class ExampleResourceData extends AbstractRequestableResourceData {

 @XmlAttribute
 public String sourceName;

 @XmlAttribute
 public String huc;

 @XmlAttribute
 public String dataKey;

 @XmlAttribute
 public String siteKey;

 public String wfo;

 public ExampleRecord[] records;

 public Map<DataTime, ExampleRecord> dataObjectMap;

 public ExampleResourceData() {

 super();
 this.nameGenerator = new AbstractNameGenerator() {

 @Override
 public String getName(AbstractVizResource<?, ?> resource) {
 return mapName;
 }

 };

}

 @Override
 protected AbstractVizResource<?, ?> constructResource(
 LoadProperties loadProperties, PluginDataObject[] objects) {
 records = new CWATRecord[objects.length];
 dataObjectMap = new HashMap<DataTime, ExampleRecord>();

 for (int i = 0; i < objects.length; i++) {
 records[i] = (ExampleRecord) objects[i];
 dataObjectMap.put(records[i].getDataTime(), records[i]);
 }

 return new Exampleesource(this, loadProperties);
 }

 /**
 * @return the records
 */
 public ExampleRecord[] getRecords() {
 return records;
 }
}

reason that the ResourceData class itself is annotated for serialization. This magic is all done in the
Bundle/Procedure XML �les that reference the ResourceData objects. That discussion however is
outside the scope of this one. The basic reason for the ResourceData class is to package and deliver
the PDO's ("Common") plugins that the Resource will then display. Again like other examples, most
of the work here is actually done in the super class or through implemented interfaces. In this and
most cases, our ExampleResourceData class extends the AbstractRequestableResourceData super
class.

Plugins
AWIPS II is designed as a plugin-based architecture modeled after the Eclipse RCP project. The
basic concept of this architecture is that a core set of plugins provides useful APIs and then more
plugins are added to provide additional functionality.

Pluginization
Pluginization is the act of making a component pluggable. Pluginization can also be understood
as making components modular, not dependent on unrelated plugins, and able to adapt to future
requirements. To understand pluginization, it is helpful to consider some examples:

Within Eclipse:
If you wish to develop Java code, you do not need the C++, Ruby, Python, etc plugins
installed.
If you wish to use Git for version control, you do not need the Subversion plugins
installed, and vice versa.

Within AWIPS II:
If you wish to display satellite data, you should not need the radar plugin installed, and
vice versa.
If you wish to use the D2D perspective, you should not need the GFE perspective
installed.

Some guidelines for achieving good pluginization:

Limit/reduce the number of dependencies a plugin needs to work
Modularize plugins, i.e. don't have a huge plugin that does a variety of things, instead
separate and target plugins for speci�c functionality
Contemplate if the plugin and its code is likely to be reused and built upon in the future

If so, strive for plugin agnostic design

Plugin agnostic components are designed in such a way that functionality can be injected,
extended, or contributed to by other plugins. With plugin agnostic design, the code of the
component does not know what plugins will be installed and contributing functionality, instead it
provides hooks for other plugins to identify themselves and their contributions. Injection through
the Spring Framework as well as the Eclipse RCP Framework help achieve this design. Plugin
writers should be aware of this type of design and strive to mimic it for their own applications to
allow for maximum extendability.

Unfortunately, good pluginization is easier to spot in hindsight, when you want to hook in a new
capability but �nd you cannot. This is why the plugin layout evolves sometimes, such as when a
plugin splits into multiple plugins or classes are moved from one plugin to another.

AWIPS II Plugins

Common
The plugins that contain code that is common to both CAVE and EDEX are considered to be the
common. These plugins generally contain the name 'common' in their fully-quali�ed name. These
plugins provide various utilities and core capabilities for both applications including serialization,
�le access, geospatial operations, metadata/data access, and http services to name a few. Common
plugins should strive to limit their dependencies and should only depend on other common
plugins and FOSS plugins.

EDEX
EDEX plugins are those that provide the functionality of the EDEX server application. These plugins
generally contain the name 'edex' in their fully-quali�ed name.

These plugins include Apache Camel con�guration, sbn/�le endpoint data distribution, data
decoding/storage, data type registration, and many others. EDEX plugins should only depend on
common plugins and other EDEX plugins.

CAVE
CAVE plugins are those that provide the basic functionality of a CAVE/Visualization-based client
application. These plugins generally contain the name 'viz' in their fully-quali�ed name. The CAVE
plugins include the Eclipse RCP Framework, graphics rendering APIs, request service APIs for data
access, dialogs for user interaction, and many user interface utilities. CAVE plugins should only
depend on common plugins and other viz plugins.

Note: Because CAVE is built from the Eclipse RCP Framework, many tutorials on Eclipse RCP can
be applied within CAVE.

Plugin Naming
Plugin naming conventions generally follow Java package naming conventions
(https://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html). Plugin names are always
in lowercase and are based on three parts:

�. The organization that developed the plugin.
com.raytheon, gov.noaa.nws.ncep, gov.nasa, org.apache, edu.wisc. The organization
name is generally a reverse of a domain name.

�. The part of the system the plugin is developed for.
(common|edex|viz). The organization name is followed by the part of the system the
plugin was developed for: common, edex, or viz (CAVE). Raytheon plugins usually have a
'uf' that stands for uFrame and applies to any code developed for AWIPS II. Raytheon
plugins that were originally created before 2009 may not have the 'uf' in the plugin
name.

�. The functionality the plugin provides.
This is up to the developer to be descriptive. Examples include d2d.ui, gfe, radar,
satellite, and geospatial. For more modular plugin separation, extra descriptors can be
added just like with package naming, such as d2d.core, d2d.ui, d2d.ui.obs,
d2d.ui.popupskewt.

Raytheon examples:
com.raytheon.uf.common.dataplugin.radar. A plugin that de�nes a metadata object
structure for radar data and common utilities for radar data.
com.raytheon.uf.edex.plugin.radar. A plugin that is used for decoding radar data into the
metadata structure de�ned in the common dataplugin.
com.raytheon.uf.viz.radar. A plugin that contains code for displaying and interacting with
radar data in CAVE.
com.raytheon.rcm.server. A plugin that contains code for use in the radar server.

NWS examples:
gov.noaa.nws.ncep.common.dataplugin
gov.noaa.nws.ncep.common.log
gov.noaa.nws.ncep.edex.plugin
gov.noaa.nws.ncep.viz

Other examples:
org.postgres
javax.media.opengl

https://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

AWIPS II Environment, Development
Approach, Driving Requirements

System Operational Environment
Large, dispersed organization, Conterminous/Contiguous/Commercial United States (CONUS)
and Outside Conterminous/Contiguous/Commercial United States (OCONUS).
24/7 operations.
Continuously changing.
Meteorologist and Hydrologist users.
Common and varied functions across sites.
Uniform products with unique details.
Unique products at some sites.
Limited resources.

Approach to Development
The AWIPS II architecture was a clean-sheet design.
Development was done off-line while Legacy AWIPS continued to support the mission.
Legacy AWIPS applications were reengineered for the new environment while maintaining
the existing user interface (e.g., black box).

Driving Requirements of AWIPS II
Maximize adaptability.
Maximize affordability (e.g., provide best value).
While meeting "ility" requirements.

Affordability is de�ned herein by the organization's multi-year budget forecast that is available for
the system's development, maintenance, and support costs (e.g., Total Cost of Ownership).
Although the forecast will vary from year to year and might increase, or decrease, it must be - and
was considered as - an immutable system design constraint to meet or beat, management reserve
notwithstanding. Of course, the system must still meet all functional and operational requirements,
or otherwise design in the facility to be tailored to the local environment.

Adaptability is the ability to change to �t current circumstances. The degree of adaptability is the
ease with which this is done. The design goal is to achieve the highest degree of adaptability
possible within the affordability constraint. Affordability and adaptability are affected by decisions
made in the design and maintenance of the system.

SSDD Motivation, Assumptions, Contents

Motivation
Maintain the integrity of the AWIPS II Architecture.
Leverage inherent capability of AWIPS II Architecture.
Minimize cost while meeting need.

Assumptions
Software Developer is the intended reader.
Software Developer knows how to program using Java, understands Object Oriented
concepts, and has at least an intermediate understanding of Eclipse IDE/Plug-in Framework,
but may be new to AWIPS II.
Knowledge in the following areas are helpful:
SWT, Python, ESB concepts, JMS, XML, SQL, Hibernate, and Spring.

SSDD Contents
References are used in lieu of replicating information that exists elsewhere to minimize
maintenance. Information on AWIPS hardware design, communications networks,
con�guration management, etc., is readily available elsewhere (i.e., System Manager's
Manual).
Many examples provided throughout the document are readily available in the Eclipse/AWIPS
Development Environment (ADE).

DataAccessLayer Class
The DataAccessLayer class is part of the Data Access Framework (DAF). It contains only static
methods which return other Python objects to be used as part of a data request.

Methods

getAvailableTimes
Get the times of available data to request

Arguments:
request: an IDataRequest de�ning the data to request
refTimeOnly: Boolean - If True only unique refTimes (i.e. cycle times) are returned

Returns: a list of DataTime objects

getGridData
Gets the grid data that matches the request at the speci�ed times. Each combination of parameter,
level, and data time will be returned as a separate PyGridData.

Arguments:
request: an IDataRequest de�ning the data to request
times: a list of DataTime objects, a TimeRange object, or None if the data is time
agnostic

Returns: a list of PyGridData objects

getGeometryData
Gets the geometry data that matches the request at the speci�ed times. Each combination of
geometry, level, and data time will be returned as a separate PyGeometryData.

Arguments:
request: an IDataRequest de�ning the data to request
times: a list of DataTime objects, a TimeRange object, or None if the data is time
agnostic

Returns: a list of PyGeometryData objects

getAvailableLocationNames
Gets the available location names that match the request without actually requesting the data.

Arguments:
request: an IDataRequest de�ning the data to request

Returns: a list of strings of available location names

getAvailableParameters
Gets the available parameters names that match the request without actually requesting the data.

getAvailableTimes(request, refTimeOnly=False)

getGridData(request, times=[])

getGeometryData(request, times=[])

getAvailableLocationNames(request)

Argument:
request: the request to �nd matching parameter names for

Returns: a list of strings of available parameter names.

getAvailableLevels
Gets the available levels that match the request without actually requesting the data.

Arguments:
request: the request to �nd matching levels for

Returns: a list of strings of available levels.

getRequiredIdenti�ers
Gets the required identi�ers for this datatype. These identi�ers must be set on a request for the
request of this datatype to succeed.

Arguments:
datatype: the datatype to �nd required identi�ers for

Returns: a list of strings of required identi�ers

getOptionalIdenti�ers
Gets the optional identi�ers for this datatype.

Arguments:
datatype: the datatype to �nd optional identi�ers for

Returns: a list of strings of optional identi�ers

newDataRequest
Creates a new instance of IDataRequest suitable for the runtime environment

Returns: a new IDataRequest (e.g. a DefaultDataRequest object)

getSupportedDatatypes
Gets the datatypes that are supported by the framework

Returns: a list of strings of supported datatypes

changeEDEXHost
Changes the EDEX host that the DAF is communicating with.

Arguments:
newhost: a string for the new hostname to connect to (e.g. ec, localhost)

getAvailableParameters(request)

getAvailableLevels(request)

newDataRequest()

changeEDEXHost(newhost)

Data Available via the DAF
The various data plugins in EDEX get "plugged in" to the DAF (typically) by the contractor's
developers in the baseline Java code. As of OB 16.1.1, the following plugins are enabled in the DAF:

acars
airep
binlightning
bufrmosavn
bufrmoseta
bufrmosgfs
bufrmoshpc
bufrmoslamp
bufrmosmrf
bufrmosngm
bufrua
climate
common_obs_spatial
ffmp
gfe
grid
hazards
hydro
ldadmesonet
maps
modelsounding
obs
pirep
practicewarning
pro�ler
radar
radar_spatial
satellite
sfcobs
warning

